Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (3): 199-210    DOI: 10.11902/1005.4537.2013.151
  本期目录 | 过刊浏览 |
冲刷腐蚀的研究现状
朱娟1, 张乔斌2, 陈宇1, 张昭1(), 张鉴清1,3, 曹楚南1,3
1. 浙江大学化学系 杭州 310027
2. 海军工程大学 武汉 430033
3. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
Progress of Study on Erosion-corrosion
ZHU Juan1, ZHANG Qiaobin2, CHEN Yu1, ZHANG Zhao1(), ZHANG Jianqing1,3, CAO Chunan1,3
1. Department of Chemistry, Zhejiang University, Hangzhou 310027, China
2. Naval Engineering University,Wuhan 430033, China
3. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(611 KB)   HTML
摘要: 

综述了金属材料在流体冲刷条件下的腐蚀研究现状、不同环境因素和材料性质对冲刷腐蚀机理的影响规律。冲刷腐蚀主要由冲刷磨损和电化学腐蚀组成,对总腐蚀速率的贡献与各种环境因素有关。材料冲刷腐蚀防护主要可从金属材料元素含量、热处理制度和表面处理3个方面入手。同时,探讨了冲刷腐蚀研究的未来发展趋势。

关键词 冲刷腐蚀机理环境因素    
Abstract

The current situation of study on erosion-corrosion mechanism and the influence of different environmental factors and alloy properties on erosion-corrosion is reviewed in this paper. The erosion-corrosion is mainly composed of two parts: erosion wear and electrochemical corrosion, of which the contribution to the total erosion-corrosion rate may depend upon the environmental factors. To protect metallic materials from erosion-corrosion the following measures may be effective: i.e. proper selection and addition of alloying elements, proper heat treatment and applied surface coatings as well. Meanwhile, the paper discusses the development of erosion-corrosion research in the future.

Key wordserosion-corrosion    mechanism    environmental factor
收稿日期: 2013-10-09     
ZTFLH:  O646  
基金资助:国家自然科学基金项目 (51131005和21273199);材料环境腐蚀国家野外科学观测研究平台资助
作者简介: null

朱娟,女,1988年生,硕士生,研究方向为金属材料腐蚀与防护

引用本文:

朱娟, 张乔斌, 陈宇, 张昭, 张鉴清, 曹楚南. 冲刷腐蚀的研究现状[J]. 中国腐蚀与防护学报, 2014, 34(3): 199-210.
Juan ZHU, Qiaobin ZHANG, Yu CHEN, Zhao ZHANG, Jianqing ZHANG, Chunan CAO. Progress of Study on Erosion-corrosion. Journal of Chinese Society for Corrosion and protection, 2014, 34(3): 199-210.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.151      或      https://www.jcscp.org/CN/Y2014/V34/I3/199

Steel Cr Ni Mo Mn C N
UNS S32654 24 22 7.3 3.5 0.01 0.5
UNS S31603 16~18 10~14 3.5 0.8 0.03 ---
表1  UNS S32654钢和UNS S31603钢中的元素组成[10]
[1] Stott F H, Breakell J E. The influence of corrosion on the wear of cast iron in sulphuric acid solutions[J]. Wear, 1989, 135(1): 119-134
[2] Zheng Y G, Yao Z Y, Ke W. Fluid mechanics factors on the corrosion mechanism of the effect of erosion[J]. Corros. Sci. Prot. Technol., 2000, 12(1): 36-40
[2] (郑玉贵, 姚治铭, 柯伟. 流体力学因素对冲刷腐蚀的影响机制[J]. 腐蚀科学与防护技术, 2000, 12(1): 36-40)
[3] Hodgkiess T, Neville A, Shrestha S. Electrochemical and mechanical interactions during erosion-corrosion of a high-velocity oxy-fuel coating and a stainless steel[J]. Wear, 1999, 233-235: 623-634
[4] Neville A, Hodgkiess T, Dallas J T. A study of the erosion-corrosion behaviour of engineering steels for marine pumping applications[J]. Wear, 1995, 186/187: 497-507
[5] Stack M M, Corlett N, Turgoose S. Some thoughts on modelling the effects of oxygen and particle concentration on the erosion-corrosion of steels in aqueous slurries[J]. Wear, 2003, 255(1-6): 225-236
[6] Burstein G T, Sasaki K. Effect of impact angle on the slurry erosion-corrosion of 304L stainless steel[J]. Wear, 2000, 240(1/2): 80-94
[7] Zu J B, Burstein G T, Hutchings I M. A comparative study of the slurry erosion and free-fall particle erosion of aluminium[J]. Wear, 1991, 149(1/2): 73-84
[8] Li Y, Burstein G T, Hutchings I M. The influence of corrosion on the erosion of aluminium by aqueous silica slurries[J]. Wear, 1995, 186/187: 515-522
[9] Zhang G A, Xu L Y, Cheng Y F. Investigation of erosion-corrosion of 3003 aluminum alloy in ethylene glycol-water solution by impingement jet system[J]. Corros. Sci., 2009, 51(2): 283-290
[10] Meng H, Hu X, Neville A. A systematic erosion-corrosion study of two stainless steels in marine conditions via experimental design[J]. Wear, 2007, 263(1-6): 355-362
[11] Tang X, Xu L Y, Cheng Y F. Electrochemical corrosion behavior of X-65 steel in the simulated oil-sand slurry. II: Synergism of erosion and corrosion[J]. Corros. Sci., 2008, 50(5): 1469-1474
[12] Watson S W, Friedersdorf F J, Madsen B W, et al. Methods of measuring wear-corrosion synergism[J]. Wear, 1995, 181-183: 476-484
[13] Neville A, Reyes M, Hodgkiess T. Mechanisms of wear on a Co-base alloy in liquid-solid slurries[J]. Wear, 2000, 238(2): 138-150
[14] Reyes M, Neville A. Degradation mechanisms of Co-based alloy and WC metal-matrix composites for drilling tools offshore[J]. Wear, 2003, 255(7-12): 1143-1156
[15] Neville A, Reza F, Chiovelli S, et al. Erosion-corrosion behaviour of WC-based MMCs in liquid-solid slurries[J]. Wear, 2005, 259(1-6): 181-195
[16] Tian B R, Cheng Y F. Electrochemical corrosion behavior of X-65 steel in the simulated oil sand slurry I: Effects of hydrodynamic condition[J]. Corros. Sci., 2008, 50(3): 773-779
[17] Niu L, Cheng Y F. Synergistic effects of fluid flow and sand particles on erosion-corrosion of aluminum in ethylene glycol-water solutions[J]. Wear, 2008, 265(3/4): 367-374
[18] Jana B D, Stack M M. Modelling impact angle effects on erosion-corrosion of pure metals: construction of materials performance maps[J]. Wear, 2005, 259(1-6): 243-255
[19] Niu L, Cheng Y F. Electrochemical characterization of metastable pitting of 3003 aluminum alloy in ethylene glycol-water solution[J]. J. Mater. Sci., 2007, 42(20): 8613-8617
[20] Flores J F, Neville A, Kapur N, et al. An experimental study of the erosion-corrosion behavior of plasma transferred arc MMCs[J]. Wear, 2009, 267(1-4): 213-222
[21] Zhang D W, Zhang X P. Laser cladding of stainless steel with Ni-Cr3C2 and Ni-WC for improving erosive-corrosive wear performance[J]. Surf. Coat. Technol., 2005, 190(2/3): 212-217
[22] Liu R, Yao M X, Patnaik P C, et al. An improved wear-resistant PTA hardfacing: VWC/stellite 21[J]. J. Compos. Mater., 2006, 40(2): 2203-2215
[23] Ding Y G, Wang H L, Guo X P, et al. Erosion-corrosion of metals in liquid-solid two-phase flow[J]. Mater. Prot., 2001, 34(11): 16-21
[23] (丁一刚, 王慧龙, 郭兴蓬等. 金属在液固两相流中的冲刷腐蚀[J]. 材料保护, 2001, 34(11): 16-21)
[24] Stack M M, Abdelrahman S M. A CFD model of particle concentration effects on erosion-corrosion of Fe in aqueous conditions[J]. Wear, 2011, 273(1): 38-42
[25] Stack M M, Corlett N, Zhou S. A methodology for the construction of the erosion-corrosion map in aqueous environments[J]. Wear, 1997, 203/204: 474-488
[26] Souza V A D, Neville A. Corrosion and synergy in a WC-Co-Cr HVDF thermal spray coating-understanding their role in erosion-corrosion degradation[J]. Wear, 2005, 259: 171-180
[27] Xu J, Zhuo C Z, Han D Z, et al. Erosion-corrosion behavior of nano-particle-reinforced Ni matrix composite alloying layer by duplex surface treatment in aqueous slurry environment[J]. Corros. Sci., 2009, 51(5): 1055-1068
[28] Zheng Y G, Yao Z M, Wei X Y. The synergistic effect between erosion and corrosion in acidic slurry medium[J]. Wear, 1995, 186/187: 555-561
[29] Yao Z M, Zheng Y G, Ke W. The influence of applied potential on the erosion-corrosion behavior of AISI321 stainless steel in acidic slurry medium[J]. Wear, 1995, 186/187: 568-572
[30] Zheng Y G, Yao Z M, He L. Recent development of studies in erosion-corrosion[J]. J. Mater. Sci. Eng., 1992, 10(3): 21-26
[30] (郑玉贵, 姚治铭, 何莉. 冲刷腐蚀的研究近况[J]. 材料科学与工程, 1992, 10(3): 21-26)
[31] Zheng Y G, Yao Z M, He L, et al. Review of contemporary approaches to study of synergism between erosion and corrosion in slurry erosion[J]. J. Mater. Sci. Eng., 1994, 12: 27-31
[31] (郑玉贵, 姚治铭, 何莉等. 泥浆型冲蚀中冲刷和腐蚀交互作用研究综述[J]. 材料科学与工程, 1994, 12: 27-31)
[32] Finnie I. Erosion of surfaces by solid particles[J]. Wear, 1960, 3(2): 87-103
[33] Hu X, Neville A. An examination of the electrochemical characteristics of two stainless steels (UNS S32654 and UNS S31603) under liquid-solid impingement[J]. Wear, 2004, 256(5): 537-544
[34] Yu H, Zheng Y G, Yao Z M. The cavitation erosion and erosion-corrosion behavior of carbon steel in simulating solutions of three rivers of China[J]. Mater. Corros., 2006, 57(9): 705-714
[35] Mohammadi F, Luo J L. Effects of particle angular velocity and friction force on erosion enhanced corrosion of 304 stainless steel[J]. Corros. Sci., 2010, 52(9): 2994-3001
[36] Jiang X X, Li S Z, Tao D D, et al. Accelerative effect of wear on corrosion of high-alloy stainless steel[J]. Corrosion, 1993, 49(10): 836-841
[37] Li J, Zheng Y G, Wang J Q, et al. Depassivation and repassivation of AISI321 stainless steel surface during solid particle impact in 10%H2SO4 solution[J]. Wear, 1995, 186/187: 562-567
[38] Stack M M, Abd El-Badia T M. Mapping erosion-corrosion of WC/Co-Cr based composite coatings: particle velocity and applied potential effects[J]. Surf. Coat. Technol., 2006, 201(3/4): 1335-1347
[39] Zheng Y G, Yao Z M, Long K, et al. Development of experimental device and dynamic electrochemical test for erosion-corrosion in Liquid-solid two-phase flow[J]. Corros. Sci. Prot. Technol., 1993, 5(4): 286-290
[39] (郑玉贵, 姚治铭, 龙康等. 液/固双相流冲刷腐蚀实验装置的研制及动态电化学测试[J]. 腐蚀科学与防护技术, 1993, 5(4): 286-290)
[40] Poulson B. Electrochemical measurements in flowing solutions[J].Corros. Sci., 1983, 23(4): 391-430
[41] Ellison B T, Cornet I. Mass transfer to a rotating disk[J]. J. Electrochem. Soc., 1971, 118(1): 68-72
[42] Becerra H Q, Retamoso C, Macdonald D D. The corrosion of carbon steel in oil-in-water emulsions under controlled hydrodynamic conditions[J]. Corros. Sci., 2000, 42(3): 561-575
[43] Guo H X, Lu B T, Luo J L. Interaction of mechanical and electrochemical factors in erosion-corrosion of carbon steel[J]. Electrochim. Acta, 2005, 51(2): 315-323
[44] Zhou S, Stack M M, Newman R C. Electrochemical studies of anodic dissolution of mild steel in a carbonate-bicarbonate buffer under erosion-corrosion conditions[J]. Corros. Sci., 1996, 38(7): 1071-1084
[45] Stack M M, James J S, Lu Q. Erosion-corrosion of chromium steel in a rotating cylinder electrode system: some comments on particle size effects[J]. Wear, 2004, 256(5): 557-564
[46] Malka R, Nesic S, Gulino D A. Erosion-corrosion and synergistic effects in disturbed liquid-particle flow[J]. Wear, 2007, 262(7/8): 791-797
[47] El-Gammala M, Mazhara H, Cottona J S, et al. The hydrodynamic effects of single-phase flow on flow accelerated corrosion in a 90-degree elbow[J]. Nucl. Eng. Design, 2010, 240(6): 1589-1598
[48] Burstein G T, Sasaki K. Detecting electrochemical transients generated by erosion-corrosion[J]. Electrochim. Acta, 2001, 46(24/25): 3675-3683
[49] Zhang T, Li D Y. Improvement in the corrosion-erosion resistance of 304 stainless steel with alloyed yttrium[J]. J. Mater. Sci., 2001, 36(14): 3479-3486
[50] Wood R J K. Erosion-corrosion interactions and their effect on marine and offshore materials[J]. Wear, 2006, 261(9): 1012-1023
[51] Stack M M, Abdulrahman G H. Mapping erosion-corrosion of carbon steel in oil exploration conditions: Some new approaches to characterizing mechanisms and synergies[J]. Tribol. Int., 2010, 43(7): 1268-1277
[52] Yang F, Zheng Y G, Yao Z M, et al. Study on erosion-corrosion behavior of Cu-Ni alloy BFe30-1-1 in flowing artificial seawater[J]. J. Chin. Soc. Corros. Prot., 1999, 19(4): 207-213
[52] (杨帆, 郑玉贵, 姚治铭等. 铜镍合金BFe30-1-1在流动人工海水中的腐蚀行为[J]. 中国腐蚀与防护学报, 1999, 19(4): 207-213)
[53] Hu X, Neville A. The electrochemical response of stainless steels in liquid-solid impingement[J]. Wear, 2005, 258(1-4): 641-648
[54] Rihan R O, Nesic S. Erosion-corrosion of mild steel in hot caustic. Part I: NaOH solution[J]. Corros. Sci., 2006, 48(9): 2633-2659
[55] Wood R J K, Wharton J A, Speyer A J, et al. Investigation of erosion-corrosion processes using electrochemical noise measurement[J]. Tribol. Int., 2002, 35(10): 631-641
[56] Zheng Z B, Zheng Y G, Sun W H, et al. Erosion-corrosion of HVOF-sprayed Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution[J]. Corros. Sci., 2013, 76: 337-347
[57] Wang Y, Zheng Y G, Ke W, et al. Slurry erosion-corrosion behaviour of high-velocity oxy-fuel (HVOF) sprayed Fe-based amorphous metallic coatings for marine pump in sand-containing NaCl solutions[J]. Corros. Sci., 2011, 53(10): 3177-3185
[58] Ferrer F, Faure T, Goudiakas J, et al. Acoustic emission study of active-passive transitions during carbon steel erosion-corrosion in concentrated sulfuric acid[J]. Corros. Sci., 2002, 44(7): 1529-1540
[59] Stack M M, Abd El-Badia T M. Some comments on mapping the combined effects of slurry concentration, impact velocity and electrochemical potential on the erosion-corrosion of WC/Co-Cr coatings[J]. Wear, 2008, 264(9/10): 826-837
[60] Yu F Z, Li S H, Ouyang M B, et al. Repassivation kinetics parameter method-A new method for rapid evaluating the erosion-corrosion resistance of stainless alloys[J]. J. Beijing Univ. Chem. Technol., 1996, 23(3): 87-93
[60] (于福洲, 黎少华, 欧阳汨波等. 快速评价合金耐冲刷腐蚀性能的再钝化动力学参数法[J]. 北京化工大学学报. 1996, 23(3): 87-93)
[61] Stack M M, Abdulrahman G H. Mapping erosion-corrosion of carbon steel in oil-water solutions: Effects of velocity and applied potential[J]. Wear, 2012, 274/275: 401-413
[62] Telfer C G, Stack M M, Jana B D. Particle concentration and size effects on the erosion-corrosion of pure metals in aqueous slurries[J]. Tribol. Int., 2012, 53: 35-44
[63] Lin Y Z, Liu J J, Yong X Y, et al. Application of numerical method to study of flow-induced corrosion-(I) Metal corrosion under laminar condition[J]. J. Chin. Soc. Corros. Prot., 1999, 19(1): 1-7
[63] (林玉珍, 刘景军, 雍兴跃等. 数值计算法在流体腐蚀研究中的应用-(I) 层流条件下金属的腐蚀[J]. 中国腐蚀与防护学报, 1999, 19(1): 1-7)
[64] Yong X Y, Liu J J, Lin Y Z, et al. Application of numerical method to study of flow-induced corrosion-(II) Metal corrosion under turbulent condition[J]. J. Chin. Soc. Corros. Prot., 1999, 19(1): 8-14
[64] (雍兴跃, 刘景军, 林玉珍等. 数值计算法在流体腐蚀研究中的应用-(II) 湍流条件下金属的腐蚀[J]. 中国腐蚀与防护学报, 1999, 19(1): 8-14)
[65] Liu J J, Lin Y Z, Tian X L, et al. Numerical simulation of flow induced corrosion of carbon steel in liquid/solid two-phase flow system[J]. J. Chem. Ind. Eng.(China), 2004, 55(2): 231-236
[65] (刘景军, 林玉珍, 田兴玲等. 碳钢在固/液两相流条件下流动腐蚀的数值模拟[J]. 化工学报, 2004, 55(2): 231-236)
[66] Liu J J, Lin Y Z, Tian X L, et al. Numerical simulation of flow induced corrosion of duplex stainless steel in liquid-particle two-phase in-pipe flow[J]. J. Chem. Ind. Eng.(China), 2004, 55(3): 409-413
[66] (刘景军, 林玉珍, 田兴玲等. 双相不锈钢管固液两相流动腐蚀的数值模拟[J]. 化工学报, 2004, 55(3): 409-413)
[67] Zou G C, Shen H J, Li C L, et al. Establishment and experimental verification of hydrodynamic model for impingement corrosion apparatus[J]. J. Chin. Soc. Corros. Prot., 2013, 33(1): 47-53
[67] (邹冠驰, 沈汉杰, 李成林等. 喷射腐蚀试验装置流体力学模型的建立与试验验证[J]. 中国腐蚀与防护学报, 2013, 33(1): 47-53)
[68] Yong X Y, Liu J J, Lin Y Z. EIS of duplex stainless steel in flowing corrosive media[J]. J. Chem. Ind. Eng.(China), 2003, 54(12):1713-1718
[68] (雍兴跃, 刘景军, 林玉珍. 流动腐蚀介质中双相不锈钢的电化学阻抗谱[J]. 化工学报, 2003, 54(12): 1713-1718)
[69] Zhang Z, Cheng X W, Zheng Y G, et al. Numerical simulation of erosion-corrosion in the liquid-solid two-phase flow[J]. Chin. J. Chem. Eng., 2000, 8(4): 347-355
[70] Hussain E A M, Robinson M J. Erosion-corrosion of 2205 duplex stainless steel in flowing seawater containing sand particles[J]. Corros. Sci., 2007, 49(4): 1737-1754
[71] Weber J. Flow induced corrosion: 25 years of industrial research[J]. Br. Corros. J., 1992, 27(3): 193-199
[72] Wu C H, Gan F X. Erosion-corrosion of metals in two-phase water slurry[J]. Mater. Prot., 2000, 33(4): 33-35
[72] (吴成红, 甘复兴. 金属在两相流动水体中的冲刷腐蚀[J]. 材料保护, 2000, 33(4): 33-35)
[73] Ruff A W, Wiederhorn S M. Erosion by solid particle impact[J]. Mater. Sci. Technol., 1979, 16: 69-124
[74] Bitter J G A. A study of erosion phenomena[J]. Wear, 1963, 6(1): 5-21
[75] Zheng Y G, Yu H, Jiang S L, et al. Effect of the sea mud on erosion-corrosion behaviors of carbon steel and low alloy steel in 2.4%NaCl solution[J]. Wear, 2008, 264(11/12): 1051-1058
[76] Luo S Z, ZhengY G, Li J, et al. Slurry erosion resistance of fusion-bonded epoxy powder coating[J]. Wear, 2001, 249(8): 733-739
[77] Tilly G P, Sage W. The interaction of particle and material behaviour in erosion processes[J]. Wear, 1970, 16(6): 447-465
[78] Xing J D, Gao Y M, Zhang G S. Investigation to erosion-corrosion behavior of stainless steel and high carbon steel[J]. J. Xi'an Jiaotong Univ., 2004, 38(5): 469-473
[78] (邢建东, 高义民, 张国赏. 不锈钢与高碳钢的冲刷腐蚀磨损试验研究[J]. 西安交通大学学报, 2004, 38(5): 469-473)
[79] Neville A, Reyes M, Xu H. Examining corrosion effects and corrosion/erosion interactions on metallic materials in aqueous slurries[J]. Tribol. Int., 2002, 35(10): 643-650
[80] Li P, Cai Q Z, Wei B K, et al. Effect of aging temperature one erosion-corrosion behavior of 17-4PH stainless steels in dilute sulphuric acid slurry[J]. J. Iron Steel Res. Int., 2006, 13(5): 73-78
[81] Finnie I, Stevick G R, Ridgely J R. The influence of impingement angle on the erosion of ductile metals by angular abrasive particles[J]. Wear, 1992, 152(1): 91-98
[82] Sasaki K, Burstein G T. The generation of surface roughness during slurry erosion-corrosion and its effect on the pitting potential[J]. Corros. Sci., 1996, 38(12): 2111-2120
[83] Heitz E. Chemo-mechanical effects of flow on corrosion[J]. Corrosion, 1991, 47(2): 135-145
[84] Dong H, Qi P Y, Li X Y, et al. Improving the erosion-corrosion resistance of AISI 316 austenitic stainless steel by low-temperature plasma surface alloying with N and C[J]. Mater. Sci. Eng., 2006, A431(1/2): 137-145
[85] Olefjord I, Wegrelius L. Surface analysis of passive state[J]. Corros. Sci., 1990, 31: 89-98
[86] Ilevbare G O, Burstein G T. The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels[J]. Corros. Sci., 2001, 43(3): 485-513
[87] Barker K C, Ball A. Synergistic abrasive corrosive wear of chromium-containing steels[J]. Br. Corros. J., 1989, 24(3): 222-228
[88] Wu X Q, Jing H M, Zheng Y G, et al. Resistance of Mo-bearing stainless steels and Mo-bearing stainless-steel coating to naphthenic acid corrosion and erosion-corrosion[J]. Corros. Sci., 2004, 46(4): 1013-1032
[89] Wang G H. Influence of the sigma phase precipitation on the microstructure and properties in duplex stainless steel[J]. China Metall., 2011, 21(6): 15-18
[89] (王国华. σ相的析出对双相不锈钢组织性能的影响[J]. 中国冶金, 2011, 21(6): 15-18)
[90] Lu X C, Li S Z, Zhang T C, et al. Effect of solution annealing temperature on corrosive wear behaviour of duplex stainless steel in sulphuric acid medium[J]. Acta Metall. Sin., 1994, 30(4): B159-B164
[90] (路新春, 李诗卓, 张天成等. 固溶处理温度对双相不锈钢在硫酸介质中腐蚀磨损行为的影响[J]. 金属学报, 1994, 30(4): B159-B164)
[91] Zheng Y G, Yao Z M, Ke W. Erosion-corrosion resistant alloy development for aggressive slurry flows[J]. Mater. Lett., 2000, 46(6): 362-368
[92] Zheng Y G, Yao Z M, Zhang Y S, et al. Erosion-corrosion synergism and erosion-corrosion resistant alloy development[J]. Acta Metall. Sin., 2000, 36(1): 51-54
[92] (郑玉责, 姚治铭, 张玉生等. 冲刷与腐蚀的交互作用与耐冲刷腐蚀合金设计[J]. 金属学报,2000, 36(1): 51-54)
[93] Wu Q, Xiao J Z, Cui K, et al. Hard phase in steel bonded carbide[J]. Rare Met. Mater. Eng., 1991, (2): 76-80
[93] (吴强, 肖建中, 崔昆等. 钢结硬质合金中的硬质相[J]. 稀有金属材料与工程, 1991, (2): 76-80)
[94] Deuis R L, Yellup J M, Subramanian C. Metal-matrix composite coatings by PTA surfacing[J]. Compos. Sci. Technol., 1998, 58(2): 299-309
[95] Zhao M H, Liu A G, Guo M H. Research on WC reinforcedmetal matrix composite[J]. Weld. Join., 2006, (11): 26-29
[95] (赵敏海, 刘爱国, 郭面焕. WC颗粒增强耐磨材料的研究现状[J]. 焊接, 2006, (11): 26-29)
[96] Levin B F, Vecchio K S, DuPont J N, et al. Modeling solid-particle erosion of ductile alloys[J]. Metall. Mater. Trans., 1999, 30A: 1763-1774
[97] De Souza V A, Neville A. Corrosion and erosion damage mechanisms during erosion-corrosion of WC-Co-Cr cermet coatings[J]. Wear, 2003, 255(1-6): 146-156
[98] Cooper R, McHattie D. Using Powder Metallurgy in Design: Wear, Corrosion and Fatigue Resistance [M]. Great Britain: Institution of Mechanical Engineers Seminar Publication, 2000
[99] Luo S Z, ZhengY G, Li J, et al. Effect of curing degree and fillers on slurry erosion behavior of fusion-bonded epoxy powder coatings[J]. Wear, 2003, 254(3/4): 292-297
[1] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[4] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[6] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[7] 胡宗武, 刘建国, 邢蕊, 尹法波. 单相流条件下90°水平弯管冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[8] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[9] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[10] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[11] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[12] 姜爱国,张建文,辛亚男,丛晓明,董轼. 加氢裂化空冷器管束多相流冲刷腐蚀数值模拟[J]. 中国腐蚀与防护学报, 2019, 39(2): 192-200.
[13] 王希靖, 王博士, 杨超, 杨艳, 沈斌. 纯Ni母材及焊缝在熔融Na2SO4-K2SO4中热腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[14] 夏大海, 宋诗哲, 王吉会, 高志明, 胡文彬. 食品包装用镀锡薄钢板的腐蚀机理研究进展[J]. 中国腐蚀与防护学报, 2017, 37(6): 513-518.
[15] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.