Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1234-1242     CSTR: 32134.14.1005.4537.2023.340      DOI: 10.11902/1005.4537.2023.340
  研究报告 本期目录 | 过刊浏览 |
纳米改性环氧隔热涂层的制备及其耐蚀性研究
吕晓明1, 王震宇1(), 韩恩厚1,2()
1 广东腐蚀科学与技术创新研究院 广州 510000
2 华南理工大学材料科学与工程学院 广州 510000
Preparation and Corrosion Resistance of Nano-ZrO2 Modified Epoxy Thermal Insulation Coatings
LYU Xiaoming1, WANG Zhenyu1(), HAN En-Hou1,2()
1 Institute of Corrosion Science and Technology, Guangzhou 510000, China
2 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510000, China
引用本文:

吕晓明, 王震宇, 韩恩厚. 纳米改性环氧隔热涂层的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
Xiaoming LYU, Zhenyu WANG, En-Hou HAN. Preparation and Corrosion Resistance of Nano-ZrO2 Modified Epoxy Thermal Insulation Coatings[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1234-1242.

全文: PDF(7510 KB)   HTML
摘要: 

针对海洋湿态热腐蚀环境,制备了纳米改性环氧耐蚀隔热涂层;并探究腐蚀过程中涂层的耐盐水、耐盐雾、抗冷热冲击及隔热性能等变化特征,分析腐蚀环境中纳米ZrO2提高环氧隔热涂层耐腐蚀性与隔热性能的关联性。研究表明,纳米改性涂层在腐蚀环境中的耐蚀与隔热稳定性得以显著提升,其中3% ZrO2添加量时,改善效果最好,而含量过少、过多时不能达到理想的防护性能。

关键词 海洋环境纳米ZrO2环氧涂层耐腐蚀隔热性    
Abstract

Located on coastal areas, facilities and pipelines serviced at high temperature will encounter from humid-hot corrosive environments for a long period, which can lead to deterioration of their thermal insulation coating. In this study, nano-ZrO2 particles modified corrosion-resistant and thermal insulated epoxy coatings were prepared and characterized in terms of salt water resistance, salt fog resistance, cold and heat shock resistance and thermal insulation performance. The results showed that the corrosion resistance and thermal insulation stability of nano-modified coatings in corrosive environments could be significantly improved. The improvement effect was the best when 3% nano- ZrO2 particles was added, but the ideal protective performance could not be achieved when the content was too small or too much.

Key wordsmarine environment    nano- ZrO2    epoxy coating    corrosion resistance    thermal insulation
收稿日期: 2023-11-01      32134.14.1005.4537.2023.340
ZTFLH:  TQ174  
基金资助:国家重点研发计划(2021YFB3701700);广东省自然科学基金(2021A1515010628)
通讯作者: 王震宇,E-mail:zywang@icost.ac.cn, 研究方向为腐蚀与防护新材料韩恩厚,E-mail:ehhan@icost.ac.cn,研究方向为腐蚀防护技术
Corresponding author: WANG Zhenyu, E-mail: zywang@icost.ac.cnHAN En-Hou, E-mail: ehhan@icost.ac.cn
作者简介: 吕晓明,女,1992年生,硕士生
CoatingComposition
Z075% epoxy resin + 10% glass-flake + 10% glass beads + 5% solvent + 30% curing agent
Z1

74% epoxy resin + 10% glass-flake + 10% glass beads + 1% nano zirconia slurry concentrate +

5% solvent + 29.6% curing agent

Z3

72% epoxy resin + 10% glass-flake + 10% glass beads + 3% nano zirconia slurry concentrate +

5% solvent + 28.8% curing agent

Z5

70% epoxy resin + 10% glass-flake + 10% glass beads + 5% nano zirconia slurry concentrate +

5% solvent + 28% curing agent

表1  4种实验涂层成分
图1  纳米ZrO2的TEM形貌、选区电子衍射、粒径分布及放置90 d后的沉降情况
图2  涂层在60℃下3.5%NaCl溶液浸泡500 h前后的宏观形貌
图3  环氧及改性涂层在60℃下3.5%NaCl溶液中浸泡24 h后的EIS谱
图4  环氧及改性涂层在60℃下3.5%NaCl溶液中浸泡480 h后的EIS谱
图5  环氧及改性涂层在60℃下3.5% NaCl溶液中浸泡960 h后的EIS谱
图6  环氧及改性涂层在60℃下3.5%NaCl溶液中浸泡1440 h后的EIS谱
图7  环氧及改性涂层电化学阻抗谱等效电路图
Sample

Time

h

Rs

Ω·cm2

Qcoat

F·cm-2

nc

Rcoat

Ω·cm2

Qct

F·cm-2

nct

Rct

Ω·cm2

Z0240.361.12 × 10-90.943.90 × 10101.95 × 1030.992.34 × 109
4804.628.83 × 10-100.979.55 × 1064.60 × 10-60.778.41 × 106
9602.434.21 × 1090.982.79 × 1051.41 × 10-50.395.22 × 105
14407.734.79 × 10-90.998.02 × 1042.46 × 10-50.401.03 × 105
Z1240.427.30 × 10-100.909.52 × 10103.28 × 10-90.131.01 × 109
4806.981.15 × 10-100.994.13 × 1087.41 × 10-80.876.04 × 107
9603.592.83 × 10-90.954.87 × 1073.13 × 10-70.729.43 × 107
14406.621.53 × 10-90.996.99 × 1062.06 × 10-60.681.78 × 106
Z3240.384.75 × 10-110.967.23 × 10103.16 × 10-110.853.51 × 1010
4805.156.39 × 10-110.974.38 × 10102.87 × 10-80.011.61 × 109
9603.292.17 × 10-90.911.28 × 1091.52 × 10-70.019.31 × 108
14403.281.36 × 10-90.951.82 × 1081.36 × 10-70.653.22 × 107
Z5240.285.56 × 10-110.964.83 × 10102.92 × 1050.931.58 × 109
4805.282.09 × 10-100.965.04 × 1093.21 × 1020.762.81 × 108
9604.566.37 × 10-100.988.47 × 1083.48 × 10-80.607.70 × 108
14404.321.49 × 10-90.961.05 × 1075.21 × 10-90.147.11 × 106
表2  环氧及改性涂层在60℃下3.5%NaCl溶液中浸泡不同时间后的EIS拟合结果
图8  环氧及改性涂层电化学元件参数随腐蚀浸泡时间的变化
图9  4种涂层在60℃下3.5%NaCl溶液中浸泡不同时间后粘结强度变化
图10  4种涂层盐雾腐蚀2100 h前后的宏观形貌
图11  不同周次后涂层的磨损量
图12  4种涂层在20个高低温冷热循环前后的光学照片
图13  4种涂层盐雾腐蚀不同时间后温差-时间隔热曲线
1 Alam M, Singh H, Limbachiya M C. Vacuum insulation panels (VIPs) for building construction industry-a review of the contemporary developments and future directions [J]. Appl. Energy, 2011, 88: 3592
2 Joudi A, Svedung H, Cehlin M, et al. Reflective coatings for interior and exterior of buildings and improving thermal performance [J]. Appl. Energy, 2013, 103: 562
3 Cao J Y, Zang B L, Cao B X, et al. Influence of chemical bonding interface of modified basalt/epoxy coating on its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1009
3 曹京宜, 臧勃林, 曹宝学 等. 改性玄武岩/环氧涂层化学键合界面对涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 1009
doi: 10.11902/1005.4537.2021.312
4 Wu G D. Preparation and characterization of silica thermal insulation coatings [D]. Harbin: Harbin Institute of Technology, 2017
4 武国栋. 二氧化硅隔热涂料的制备及性能表征 [D]. 哈尔滨: 哈尔滨工业大学, 2017
5 Wang J, Zhao P Y, Wang K W, et al. Effect of three kinds of thermal insulation on fireproof and thermal insulation properties of epoxy coating [J]. J. Qingdao Univ. Sci. Technol. (Nat. Sci. Ed.), 2019, 40(1): 62
5 王 杰, 赵潘宇, 王渴望 等. 三种隔热填料对环氧涂层的阻燃和隔热性能的影响 [J]. 青岛科技大学学报(自然科学版), 2019, 40(1): 62
6 Liang X L, Liu Q, Wang G, et al. Study on corrosion resistance and thermal insulation properties of graphene oxide modified epoxy thermal insulation coating [J]. Chin. J. Mater. Res., 2020, 34: 345
doi: 10.11901/1005.3093.2019.543
6 梁新磊, 刘 茜, 王 刚 等. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究 [J]. 材料研究学报, 2020, 34: 345
doi: 10.11901/1005.3093.2019.543
7 Wang G R, Mei Z Y, Li Y, et al. Zinc-containing metal-organic frameworks nanospheres for flame retardation and thermal insulation performance in epoxy resin-based coatings [J]. Polym. Test., 2023, 128: 108209
8 Gowtham S, Hariprasad S, Arunnellaiappan T, et al. An investigation on ZrO2 nano-particle incorporation, surface properties and electrochemical corrosion behaviour of PEO coating formed on Cp-Ti [J]. Surf. Coat. Technol., 2017, 313: 263
9 Ramanathan E, Balasubramanian S. Comparative study on polyester epoxy powder coat and amide cured epoxy liquid paint over nano-zirconia treated mild steel [J]. Prog. Org. Coat., 2016, 93: 68
10 Torrico R F A O, Harb S V, Trentin A, et al. Structure and properties of epoxy-siloxane-silica nanocomposite coatings for corrosion protection [J]. J. Colloid Interf. Sci., 2018, 513: 617
doi: S0021-9797(17)31374-7 pmid: 29202281
11 Hang T T X, Truc T A, Nam T H, et al. Corrosion protection of carbon steel by an epoxy resin containing organically modified clay [J]. Surf. Coat. Technol., 2017, 201: 7408
12 Yu F, Wang X, Zhang Z. Research progress of nanofillers for epoxy anti-corrosion coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 220
12 于 芳, 王 翔, 张 昭. 纳米填料在环氧防腐涂层中的应用研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 220
13 Liu L, Shao Z Y, Jia T Y, et al. Research progress on application of halloysite nanotubes for modification of smart anti-corrosion coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 523
13 刘 玲, 邵紫雅, 贾天越 等. 埃洛石纳米管负载改性及其在智能防腐涂层中的应用研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 523
14 Song H J, Zhang Z Z. Investigation of the tribological properties of polyfluo wax/polyurethane composite coating filled with nano-SiC or nano-ZrO2 [J]. Mater. Sci. Eng., 2006, 426A: 59
15 Ebrahim-Ghajari M, Allahkaram S R, Mahdavi S. Corrosion behaviour of electrodeposited nanocrystalline Co and Co/ZrO2 nanocomposite coatings [J]. Surf. Eng., 2015, 31: 251
16 Li J L, Peng C, Li Z W, et al. The improvement in cryogenic mechanical properties of nano-ZrO2/epoxy composites via surface modification of nano-ZrO2 [J]. RSC Adv., 2016, 6: 61393
17 Xu W H, Wang Z Y, Han E-H, et al. Corrosion performance of nano-ZrO2 modified coatings in hot mixed acid solutions [J]. Materials (Basel), 2018, 11: 934
18 Chang J W, Wang Z Y, Han E-H, et al. Corrosion resistance of tannic acid, D-limonene and nano-ZrO2 modified epoxy coatings in acid corrosion environments [J]. J. Mater. Sci. Technol., 2021, 65: 137
[1] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[2] 冯少宇, 周兆辉, 杨兰兰, 乔岩欣, 王金龙, 王福会. 海洋环境下TC4合金的电化学及磨损行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1243-1254.
[3] 王天丛, 赵东杨, 向雪云, 吴航, 王文. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.
[4] 张炬焕, 刘静, 彭晶晶, 张弦, 吴开明. Al-Zn-In系牺牲阳极在模拟海洋环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1223-1233.
[5] 马晓伟, 薛荣洁, 王涛涛, 杨亮, 刘珍光. 锆基非晶合金与传统合金在海水中的耐腐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
[6] 林一, 刘涛, 郭彦兵, 阮晴, 郭章伟, 董丽华. 船用低温钢焊接材料的研发与腐蚀方法评价[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[7] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[8] 韩东晓, 纪文会, 王通, 王巍. 基于弛豫时间分布和有限元模拟的环氧涂层渗水行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[9] 刘国强, 张东方, 陈昊翔, 范志宏, 熊建波, 吴清发. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[10] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[11] 胡倩, 高佳仪, 郭瑞生, 史俊勤, 王显宗. 微纳结构对阳极氧化铝超滑表面长期耐蚀性的影响机制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 773-780.
[12] 吴多利, 吴昊天, 孙珲, 史建军, 魏新龙, 张超. 激光熔覆高温防护涂层研究现状及发展方向[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[13] 张而耕, 杨磊, 杨虎, 梁丹丹, 陈强, 周琼, 黄彪. 热喷涂Fe基非晶涂层的耐腐蚀性的研究及优化[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.
[14] 王腾宇, 张正贵, 陆卫中, 吴希革. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为[J]. 中国腐蚀与防护学报, 2022, 42(6): 929-938.
[15] 王育鑫, 吴波, 戴乐阳, 胡科峰, 吴建华, 杨阳, 闫福磊, 张贤慧. 低合金钢在模拟海洋低温环境下的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.