Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 957-964     CSTR: 32134.14.1005.4537.2024.022      DOI: 10.11902/1005.4537.2024.022
  研究报告 本期目录 | 过刊浏览 |
船用低温钢焊接材料的研发与腐蚀方法评价
林一1, 刘涛2(), 郭彦兵2, 阮晴2, 郭章伟2, 董丽华2
1.中国核能电力股份有限公司 北京 100000
2.上海海事大学海洋科学与工程学院 海洋材料研究院 上海 201306
Research and Development of Welding Materials For Low-temperature Steel and Corrosion Evaluation Methods
LIN Yi1, LIU Tao2(), GUO Yanbing2, RUAN Qing2, GUO Zhangwei2, DONG Lihua2
1. China National Nuclear Power Co., Ltd., Beijing 100000, China
2. Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
引用本文:

林一, 刘涛, 郭彦兵, 阮晴, 郭章伟, 董丽华. 船用低温钢焊接材料的研发与腐蚀方法评价[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
Yi LIN, Tao LIU, Yanbing GUO, Qing RUAN, Zhangwei GUO, Lihua DONG. Research and Development of Welding Materials For Low-temperature Steel and Corrosion Evaluation Methods[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 957-964.

全文: PDF(7380 KB)   HTML
摘要: 

海洋工程焊接结构件的腐蚀性能对海洋工程的安全性影响巨大,但目前缺乏科学和系统的评价方法。基于此,本文采用了两种焊接结构件,其焊料合金成分不同,将其浸泡于含腐蚀性细菌的人造海水中,并对其进行腐蚀性能评价。研究表明宏观测试方法(如电化学阻抗法,失重法等)与微观测试方法(微区电化学扫描)所得到的结果并不完全一致。因此,在评价焊接结构件耐腐蚀性时,不能仅通过传统的电化学或失重等测试方法,还应使用微观电化学测试手段。根据焊接结构件的微观腐蚀性能,更佳准确的指导焊接结构件母材与焊材的搭配与选择,提高其整体耐海水腐蚀性能。

关键词 焊接结构件耐腐蚀性能腐蚀性细菌    
Abstract

The corrosion performance of marine engineering welded structures is of significance for the offshore engineering's safety, however, for that there is hardly any scientific and systematic evaluation methods. Herein, two kinds of welded structures are designed and made with two solder alloys of different composition. Then the corrosion performance of the two coupons were comparatively evaluated by immersion in an artificial seawater containing corrosive bacteria. It is surprisingly found that macroscopic testing results (such as electrochemical impedance, massless testing, etc.) and microscopic testing results (micro-area electrochemical scanning) did not exactly match each other. Therefore, it is not rigorous to evaluate the corrosion resistance of welded structural parts only via the conventional electrochemical method or massless testing, but the microscopic electrochemical testing method should also be applied. Combined with the macroscopic and microscopic corrosion tests, we can be more accurately matching and selecting the base metal and solder of the welded structure, which will guide us to improve its overall seawater corrosion resistance.

Key wordswelded joint    corrosion resistance    corrosive bacteria
收稿日期: 2024-01-14      32134.14.1005.4537.2024.022
ZTFLH:  TG172  
通讯作者: 刘涛,E-mail:liutao@shmtu.edu.cn,研究方向为极地船舶材料腐蚀与防护
Corresponding author: LIU Tao, E-mail: liutao@shmtu.edu.cn
作者简介: 林 一,男,1984年生,高级工程师,博士
Weld wireBase metalDimension of the base metal / mmWeld tilt Angle / (°)
BHEH36-III/XUN-128ElectroplatingDH36Nδ20×500×20010
Butt weldingEH36δ20×500×15030
BHEH40-III/XUN-127ElectroplatingDH36Nδ20×500×20010
Butt weldingE40δ20×500×15030
表1  埋弧焊焊丝的力学性能
Welding wireGrade

YS

MPa

UTS

MPa

Elongation

%

Impact absorbing energy

J

BHEH36-III/XUN-128Deposited metal5Y≥375490-660≥22≥47 (-60oC)
Welding metal-≥490-≥47 (-60oC)
BHEH40-III/XUN-127Deposited metal5Y40M≥400510-690≥22≥47 (-60oC)
Welding metal-≥510-≥47 (-60oC)
表2  埋弧焊焊丝焊接参数
Welding wireGrade

YS

MPa

UTS

MPa

Elongation

%

Impact absorbing energy

J

BHEH36-III/XUN-128Deposited metal5Y≥375490-660≥22≥34 (-60oC)
Welding metal-≥490-≥34 (-60oC)
BHEH40-III/XUN-127Deposited metal5Y40M≥400510-690≥22≥39 (-60oC)
Welding metal-≥510-≥39 (-60oC)
表3  气保焊焊丝的力学性能
Size / mmElectrodeCurrent / AVoltage / VGasSpeed of welding / mm·min-1
Φ1.2DC230-29024-30Ar + 20%CO2360-400
Φ1.2DC230-29024-30Ar + 20%CO2360-400
表4  气保焊焊丝的焊接参数
Welding wire

Wire diameter

mm

Welding

flux/

Gas

Size

mm

Gauge

length

mm

YS

MPa

UTS

MPa

Elongation

%

Impact absorbing

energy -60℃

J

FH40(5Y40)-

121

98% + 2%CO2

--≥400510-690≥22

≥39 (SAW)

≥47 (GMAW)

FH36(5Y36)-

121

98% + 2%CO2

--≥375490-660≥22

≥39 (SAW)

≥47 (GMAW)

表5  焊丝的力学性能
图1  两种焊接接头在海水中浸泡1、5、9、15 d时的Nyquist图
TimeYf / S·s n ·cm-2nRf / Ω·cm2Ydl / S·s n ·cm-2nRct / Ω·cm2
A-1 d1.1 × 10-60.81236.35.7 × 10-40.741614
A-5 d3.0 × 10-70.78291.52.0 × 10-30.653371
A-9 d2.3 × 10-70.88322.12.2 × 10-30.602665
A-15 d3.0 × 10-70.89415.22.6 × 10-30.722215
B-1 d7.2 × 10-80.83210.36.5 × 10-40.811054
B-5 d2.0 × 10-70.82219.23.8 × 10-30.71880
B-9 d2.2 × 10-30.67225.31.4 × 10-30.67706
B-15 d1.8 × 10-30.57309.86.6 × 10-30.651989
表6  阻抗数据拟合表
图2  焊接接头样品浸泡1、5、9、15 d时的Rp值
图3  两种焊接接头样品浸泡30 d后去除腐蚀产物的平均腐蚀速率
图4  焊接接头-A浸泡3 d前后的SVET测试图
图5  焊接接头-B浸泡30 d前后的SVET测试图
图6  焊缝A浸泡30 d后的白光干涉图
图7  焊缝B浸泡30 d后的白光干涉图
图8  两种焊接接头浸泡30 d后的白光干涉数据。
[1] Zhao B. What does the normalization of Arctic navigation mean? [J]. China Ship Surv., 2019, (9): 39
[1] 赵 博. 北极航行常态化意味着什么? [J]. 中国船检, 2019, (9): 39
[2] Chen L Q. Polar expeditions for arctic and Antarctic sciences in the 21st century [J]. Chin. J. Nat., 2009, 31: 81
[2] 陈立奇. 21世纪的极地科学探索——面临的机遇和挑战 [J]. 自然杂志, 2009, 31: 81
[3] Agarkov S, Motina T, Matviishin D. The environmental impactcaused by developing energy resources in the Arctic region [J]. IOP Conf. Ser. Earth Environ. Sci., 2018, 180: 012007.
[4] Nie F J, Zhang W B, Cao Y, et al. New progress on the exploration of the important mineral resources of the Arctic circle and its adjacent region [J]. Geol. Sci. Technol. Inform., 2013, 32(5): 1
[4] 聂凤军, 张伟波, 曹 毅 等. 北极圈及邻区重要矿产资源找矿勘查新进展 [J]. 地质科技情报, 2013, 32(5): 1
[5] Wang X L, Yu Q, Liu E H, et al. Current status and development trends of ship equipment and material testing under polar conditions [J]. Chin. Metrol., 2018, (8): 78
[5] 王勋龙, 于 青, 刘二虎 等. 极地条件下船舶装备与材料检测现状及发展趋势 [J]. 中国计量, 2018, (8): 78
[6] Yue H, Wu X F, Zhao X Y. Current status and development trends of polar ships [J]. Chin. Ship Surv., 2020, (7): 58
[6] 岳 宏, 吴笑风, 赵宇欣. 极地船舶发展现状及研制趋势 [J]. 中国船检, 2020, (7): 58
[7] Xue S B, Wang B, Zhang L, et al. Development of green welding technology in China during the past decade [J]. Mater. Rep., 2019, 33: 2813
[7] 薛松柏, 王 博, 张 亮 等. 中国近十年绿色焊接技术研究进展 [J]. 材料导报, 2019, 33: 2813
[8] Leng W J, Shi X Z, Xin Y L, et al. Correlation of corrosion information aquired by indoor acceleration testing and by real low temperature marine atmosphere exposure in polar region for Ni-Cr-Mo-V steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 91
[8] 冷文俊, 石西召, 辛永磊 等. 极地低温海洋大气环境下Ni-Cr-Mo-V钢腐蚀行为与室内外相关性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 91
[9] Yang H F, Yuan Z Z, Li J, et al. Effect of Ni content on corrosion behavior of cu-bearing aged weldable steels in a simulated tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1022
[9] 杨海峰, 袁志钟, 李 健 等. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1022
doi: 10.11902/1005.4537.2022.330
[10] Huang G Q, Han B, Yang H Y. Seawater corrosion behavior of welding joints of steels for marine applications [J]. Equip. Environ. Eng., 2015, 12(4): 11
[10] 黄桂桥, 韩 冰, 杨海洋. 海洋用钢焊接接头的海水腐蚀行为研究 [J]. 装备环境工程, 2015, 12(4): 11
[11] Hu J Z, Lan W J, Deng P C, et al. Corrosion behavior of E690 steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1140
[11] 胡杰珍, 蓝文杰, 邓培昌 等. E690钢在热带海洋大气环境下的初期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1140
doi: 10.11902/1005.4537.2022.388
[12] Zhang J, Li H X, Yin Z Q, et al. Research progress on corrosion of welded joints [J]. Corros. Sci. Prot. Technol., 2018, 30: 661
[12] 张 婧, 李海新, 殷子强 等. 焊接结构件的腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2018, 30: 661
[13] Zhu Y F, Liu Z Y, Xie D, et al. Advancements of the core fundamental technologies and strategies of China regarding the research and development on polar ships [J]. Bull. Natl. Nat. Sci. Found. China, 2015, 29: 178
[13] 朱英富, 刘祖源, 解 德 等. 极地船舶核心关键基础技术现状及我国发展对策 [J]. 中国科学基金, 2015, 29: 178
[14] Xi Y Z. Canadian navy polar class PC-5 arctic offshore patrol ships [J]. Ordnance Knowl., 2010, (5): 48
[14] 西言早. 加拿大PC-5型极地近海巡逻舰 [J]. 兵器知识, 2010, (5): 48
[15] He Q Q, Xia X, Liu Y M. Research on the development trend of ice breaking technology of polar icebreaker [J]. China Water Trans., 2020, (6): 76
[15] 何纤纤, 夏 鑫, 刘雨鸣. 极地破冰船的破冰技术发展趋势研究 [J]. 中国水运, 2020, (6): 76
[16] Liu Y, Chen Y M, Wang J M. Effect of welding technology on properties of steel welded joints in offshore platform [J]. Hot Work. Technol., 2017, 46(11): 9
[16] 刘 岩, 陈永满, 王建明. 焊接工艺对海洋平台用钢焊接接头性能的影响 [J]. 热加工工艺, 2017, 46(11): 9
[17] Yang M. Shipbuilding Foundation[M]. Beijing: National Defense Industry Press, 2005
[17] 杨 敏. 船舶制造基础[M]. 北京: 国防工业出版社, 2005
[18] Wang L D. Properties of welding joints of low temperature steel and their low temperature toughness [D]. Shanghai: Shanghai Jiao Tong University, 2014
[18] 王璐达. 低温钢焊接接头性能及强韧机理分析 [D]. 上海: 上海交通大学, 2014
[1] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[2] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[3] 胡雄鑫, 张弦, 刘静, 吴开明, 林安. 无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[4] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[5] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[6] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[7] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[8] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[9] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[10] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[11] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[12] 张金龙, 屠礼明, 谢兴飞, 姚美意, 周邦新. Zr-1Nb-xGe合金在400 ℃过热蒸汽中耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2014, 34(2): 171-177.
[13] 王平,程英亮,张昭. Ni-SiC纳米复合镀层腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 371-376.
[14] 刘丽红,张子华,闫杰,苏少燕. 化学镀镍磷合金在海洋环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(5): 369-373.
[15] 梁叔全,张勇,官迪凯,谭小平,唐艳,毛志伟. 轧制温度对铝阳极Al-Mg-Sn-Bi-Ga-In组织和性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(4): 295-299.