|
|
两种新型Ni-Cr-Mo-V钢在模拟海水环境中的腐蚀行为对比研究 |
王玉雪1, 朱澳鸿2, 王力伟1( ), 崔中雨2 |
1.青岛大学机电工程学院 青岛 266071 2.中国海洋大学材料科学与工程学院 青岛 266100 |
|
Comparative Study on Corrosion Behavior of Two Novel Ni-Cr-Mo-V Steels in Simulated Seawater Environment |
WANG Yuxue1, ZHU Aohong2, WANG Liwei1( ), CUI Zhongyu2 |
1. College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China 2. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China |
引用本文:
王玉雪, 朱澳鸿, 王力伟, 崔中雨. 两种新型Ni-Cr-Mo-V钢在模拟海水环境中的腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.
Yuxue WANG,
Aohong ZHU,
Liwei WANG,
Zhongyu CUI.
Comparative Study on Corrosion Behavior of Two Novel Ni-Cr-Mo-V Steels in Simulated Seawater Environment[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 918-926.
[1] |
Liu C, Chen T Q, Li X G. Research progress on initiation mechanism of local corrosion induced by inclusions in low alloy steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 746
|
[1] |
刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 746
doi: 10.11902/1005.4537.2023.147
|
[2] |
Wang Y H, Zhang X, Cheng L, et al. Correlation between active/inactive (Ca, Mg, Al)-O x -S y inclusions and localised marine corrosion of EH36 steels [J]. J. Mater. Res. Technol., 2021, 13: 2419
|
[3] |
Eguchi K. Quantitative analysis of initiation site of pitting corrosion on type 304 austenitic stainless steel [J]. Corros. Sci., 2023, 221: 111312
|
[4] |
Liu C, Li X, Revilla R I, et al. Towards a better understanding of localised corrosion induced by typical non-metallic inclusions in low-alloy steels [J]. Corros. Sci., 2021, 179: 109150
|
[5] |
Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment [J]. Corros. Sci., 2018, 138: 96
|
[6] |
Nishimoto M, Muto I, Sugawara Y, et al. Cerium addition to CaS inclusions in stainless steel: Insolubilizing water-soluble inclusions and improving pitting corrosion resistance [J]. Corros. Sci., 2021, 180: 109222
|
[7] |
Tokuda S, Muto I, Sugawara Y, et al. Pit initiation on sensitized Type 304 stainless steel under applied stress: Correlation of stress, Cr-depletion, and inclusion dissolution [J]. Corros. Sci., 2020, 167: 108506
|
[8] |
Zhao Y G, Zhao X H, Xia F, et al. Unraveling the effect of sulfide-oxide complex inclusions on the localized corrosion mechanism for carbon steel [J]. Corros. Sci., 2023, 224: 111555
|
[9] |
Huang X H, Qiu W F, Niu B, et al. Role of complex nonmetallic inclusions on the localized corrosion resistance of wire arc additively manufactured super duplex stainless steel [J]. J. Mater. Res. Technol., 2024, 28: 799
|
[10] |
Li Z L, Ji Y C, Chen J H, et al. Local corrosion characteristics of CaS/CaO-MgO-Al2O3 inclusions in low-alloy steel under multi-factor mechanisms [J]. J. Mater. Res. Technol., 2023, 24: 2469
|
[11] |
Wang Z H, Zhang X, Cheng L, et al. Role of inclusion and microstructure on corrosion initiation and propagation of weathering steels in marine environment [J]. J. Mater. Res. Technol., 2021, 10: 306
|
[12] |
Zhang X W, Zhao S L, Wang Z, et al. The pitting to uniform corrosion evolution process promoted by large inclusions in mooring chain steels [J]. Mater. Charact., 2021, 181: 111456
|
[13] |
Tao H M, Zhou C S, Zheng Y Y, et al. Anomalous evolution of corrosion behaviour of warm-rolled type 304 austenitic stainless steel [J]. Corros. Sci., 2019, 154: 268
|
[14] |
Yang G M, Du Y F, Chen S Y, et al. Effect of grain size on corrosion behavior of 304 stainless steel in coal chemical high salty wastewater [J]. Mater. Today Commun., 2023, 34: 105407
|
[15] |
Zhao M M, Wu H Y, Lu J N, et al. Effect of grain size on mechanical property and corrosion behavior of a metastable austenitic stainless steel [J]. Mater. Charact., 2022, 194: 112360
|
[16] |
Zhang W J, Liu F G, Liu L X, et al. Effect of grain size and distribution on the corrosion behavior of Y2O3 dispersion-strengthened 304 stainless steel [J]. Mater. Today Commun., 2022, 31: 103723
|
[17] |
Wang P J, Ma L W, Cheng X Q, et al. Effect of grain size and crystallographic orientation on the corrosion behaviors of low alloy steel [J]. J. Alloy. Compd., 2021, 857: 158258
|
[18] |
Li G, Wu W, Chai P L, et al. Influence of Cr and Ni elements on the electrochemical and early corrosion behavior of FeMnAlC low-density steel [J]. J. Mater. Res. Technol., 2023, 23: 5892
|
[19] |
Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
|
[20] |
Dong B J, Liu W, Zhang T Y, et al. Clarifying the effect of a small amount of Cr content on the corrosion of Ni-Mo steel in tropical marine atmospheric environment [J]. Corros. Sci., 2023, 210: 110813
|
[21] |
Wu W, Cheng X Q, Hou H X, et al. Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere [J]. Appl. Surf. Sci., 2018, 436: 80
|
[22] |
Wu W, Liu Z Y, Wang Q Y, et al. Improving the resistance of high-strength steel to SCC in a SO2-polluted marine atmosphere through Nb and Sb microalloying [J]. Corros. Sci., 2020, 170: 108693
|
[23] |
Mu Y K, He L H, Deng S H, et al. A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility [J]. Acta Mater., 2022, 232: 117975
|
[24] |
Zhang S Q, Fan E D, Wan J F, et al. Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel [J]. Corros. Sci., 2018, 139: 83
|
[25] |
Yang J L, Lu Y F, Guo Z H, et al. Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2018, 130: 64
|
[26] |
Wranglen G. Pitting and sulphide inclusions in steel [J]. Corros. Sci., 1974, 14: 331
|
[27] |
Li Z L. Mechanism of the influence of alloying elements in low-alloy steel on corrosion initiation and extension [D]. Beijing: University of Science and Technology Beijing, 2023
|
[27] |
李曌亮. 低合金钢中合金元素对腐蚀萌生与扩展影响机制 [D]. 北京: 北京科技大学, 2023
|
[28] |
Wang D, Zhong Q D, Yang J, et al. Effects of Cr and Ni on the microstructure and corrosion resistance of high-strength low alloy steel [J]. J. Mater. Res. Technol., 2023, 23: 36
|
[29] |
Qi J J, Huang B Y, Wang Z H, et al. Dependence of corrosion resistance on grain boundary characteristics in a high nitrogen CrMn austenitic stainless steel [J]. J. Mater. Sci. Technol., 2017, 33: 1621
doi: 10.1016/j.jmst.2017.09.016
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|