Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 918-926     CSTR: 32134.14.1005.4537.2024.032      DOI: 10.11902/1005.4537.2024.032
  研究报告 本期目录 | 过刊浏览 |
两种新型Ni-Cr-Mo-V钢在模拟海水环境中的腐蚀行为对比研究
王玉雪1, 朱澳鸿2, 王力伟1(), 崔中雨2
1.青岛大学机电工程学院 青岛 266071
2.中国海洋大学材料科学与工程学院 青岛 266100
Comparative Study on Corrosion Behavior of Two Novel Ni-Cr-Mo-V Steels in Simulated Seawater Environment
WANG Yuxue1, ZHU Aohong2, WANG Liwei1(), CUI Zhongyu2
1. College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
2. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

王玉雪, 朱澳鸿, 王力伟, 崔中雨. 两种新型Ni-Cr-Mo-V钢在模拟海水环境中的腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.
Yuxue WANG, Aohong ZHU, Liwei WANG, Zhongyu CUI. Comparative Study on Corrosion Behavior of Two Novel Ni-Cr-Mo-V Steels in Simulated Seawater Environment[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 918-926.

全文: PDF(22515 KB)   HTML
摘要: 

采用浸泡实验、电化学实验和微观形貌观察研究了两种Ni-Cr-Mo-V钢(A钢和B钢)在海水环境下的腐蚀行为与机制。结果表明,两种钢腐蚀阳极和阴极电化学过程一致,但B钢表现出较正的腐蚀电位和较低的腐蚀电流密度。A钢中夹杂物类型为CaS-MgO-Al2O3,尺寸在3~5 μm之间,活性夹杂物引发局部腐蚀;B钢主要为Al2O3夹杂物,其尺寸在1~3 μm之间,且诱发局部腐蚀的程度较轻。长周期腐蚀42 d后,两种钢均发生均匀腐蚀。两种钢腐蚀产物层分为致密的内锈层和疏松的外锈层,A钢锈层厚度大于B钢,且A钢中内锈层中纵向分布的裂纹降低了锈层的保护性。

关键词 Ni-Cr-Mo-V钢夹杂物锈层腐蚀行为    
Abstract

The corrosion behavior of two novel Ni-Cr-Mo-V steels (steel A and steel B) in a simulated seawater environment was comparatively investigated by means of immersion test, electrochemical test, and microscopic observation. The results indicate that the cathodic and anodic electrochemical processes in the corrosion process of the two steels are consistent, while the steel B shows a more positive corrosion potential and lower corrosion current density. The main inclusions in steel A is CaS-MgO-Al2O3 with sizes ranging from 3 to 5 μm, which act as active sites of localized corrosion initiation; in comparison, the Al2O3 inclusions in steel B with sizes ranging from 1 μm to 3 μm, the tendency of localized corrosion induced by which is relatively light. After long-term corrosion for 42 d, the two steels all show uniform corrosion with bilayered corrosion product scale composed of a dense inner rust layer and a loose outer rust layer. However, the thickness of the rust scale of steel A was greater than that of steel B. Besides, there existed longitudinal cracks in the inner rust layer of steel A, which may deteriorate the protective property of the rust scale.

Key wordsNi-Cr-Mo-V steel    inclusion    rust layer    corrosion behavior
收稿日期: 2024-01-22      32134.14.1005.4537.2024.032
ZTFLH:  TG172  
通讯作者: 王力伟,E-mail:ustbwangliwei@126.com,研究方向为材料自然环境腐蚀失效机理
Corresponding author: WANG Liwei, E-mail: ustbwangliwei@126.com
作者简介: 王玉雪,女,1997年生,硕士生
MaterialCSPSiMnNiCrMoVFe
Steel A0.080.0030.010.280.514.620.560.470.06Bal.
Steel B0.050.0030.010.270.837.270.590.640.07Bal.
表 1  实验中所用两种Ni-Cr-Mo-V钢的化学成分
图1  两种钢的微观组织形态
图2  两种钢基于EBSD测量的IPF取向图,KAM图,晶界分布图和晶粒尺寸统计图
图3  两种合金钢在人工海水溶液中的Nyquist图,Bode图,动电位极化曲线阳极图和极化曲线阴极图
图4  两种钢中夹杂物尺寸统计结果
图5  两种钢中夹杂物的SEM形貌和EDS结果
图6  A钢在人工海水溶液中浸泡不同时间后夹杂物诱发局部腐蚀的SEM形貌
图7  A钢浸泡3600 s后的活性夹杂物和非活性夹杂物SEM形貌及EDS结果
图8  A钢浸泡5 s和600 s后活性夹杂物和非活性夹杂物的SEM形貌
图9  B钢在人工海水溶液中浸泡不同时间后夹杂物诱发局部腐蚀的SEM形貌
图10  两种钢浸泡24 h后的SEM形貌和CLSM结果
图11  两种钢浸泡42 d后的表面和截面形貌
[1] Liu C, Chen T Q, Li X G. Research progress on initiation mechanism of local corrosion induced by inclusions in low alloy steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 746
[1] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 746
doi: 10.11902/1005.4537.2023.147
[2] Wang Y H, Zhang X, Cheng L, et al. Correlation between active/inactive (Ca, Mg, Al)-O x -S y inclusions and localised marine corrosion of EH36 steels [J]. J. Mater. Res. Technol., 2021, 13: 2419
[3] Eguchi K. Quantitative analysis of initiation site of pitting corrosion on type 304 austenitic stainless steel [J]. Corros. Sci., 2023, 221: 111312
[4] Liu C, Li X, Revilla R I, et al. Towards a better understanding of localised corrosion induced by typical non-metallic inclusions in low-alloy steels [J]. Corros. Sci., 2021, 179: 109150
[5] Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment [J]. Corros. Sci., 2018, 138: 96
[6] Nishimoto M, Muto I, Sugawara Y, et al. Cerium addition to CaS inclusions in stainless steel: Insolubilizing water-soluble inclusions and improving pitting corrosion resistance [J]. Corros. Sci., 2021, 180: 109222
[7] Tokuda S, Muto I, Sugawara Y, et al. Pit initiation on sensitized Type 304 stainless steel under applied stress: Correlation of stress, Cr-depletion, and inclusion dissolution [J]. Corros. Sci., 2020, 167: 108506
[8] Zhao Y G, Zhao X H, Xia F, et al. Unraveling the effect of sulfide-oxide complex inclusions on the localized corrosion mechanism for carbon steel [J]. Corros. Sci., 2023, 224: 111555
[9] Huang X H, Qiu W F, Niu B, et al. Role of complex nonmetallic inclusions on the localized corrosion resistance of wire arc additively manufactured super duplex stainless steel [J]. J. Mater. Res. Technol., 2024, 28: 799
[10] Li Z L, Ji Y C, Chen J H, et al. Local corrosion characteristics of CaS/CaO-MgO-Al2O3 inclusions in low-alloy steel under multi-factor mechanisms [J]. J. Mater. Res. Technol., 2023, 24: 2469
[11] Wang Z H, Zhang X, Cheng L, et al. Role of inclusion and microstructure on corrosion initiation and propagation of weathering steels in marine environment [J]. J. Mater. Res. Technol., 2021, 10: 306
[12] Zhang X W, Zhao S L, Wang Z, et al. The pitting to uniform corrosion evolution process promoted by large inclusions in mooring chain steels [J]. Mater. Charact., 2021, 181: 111456
[13] Tao H M, Zhou C S, Zheng Y Y, et al. Anomalous evolution of corrosion behaviour of warm-rolled type 304 austenitic stainless steel [J]. Corros. Sci., 2019, 154: 268
[14] Yang G M, Du Y F, Chen S Y, et al. Effect of grain size on corrosion behavior of 304 stainless steel in coal chemical high salty wastewater [J]. Mater. Today Commun., 2023, 34: 105407
[15] Zhao M M, Wu H Y, Lu J N, et al. Effect of grain size on mechanical property and corrosion behavior of a metastable austenitic stainless steel [J]. Mater. Charact., 2022, 194: 112360
[16] Zhang W J, Liu F G, Liu L X, et al. Effect of grain size and distribution on the corrosion behavior of Y2O3 dispersion-strengthened 304 stainless steel [J]. Mater. Today Commun., 2022, 31: 103723
[17] Wang P J, Ma L W, Cheng X Q, et al. Effect of grain size and crystallographic orientation on the corrosion behaviors of low alloy steel [J]. J. Alloy. Compd., 2021, 857: 158258
[18] Li G, Wu W, Chai P L, et al. Influence of Cr and Ni elements on the electrochemical and early corrosion behavior of FeMnAlC low-density steel [J]. J. Mater. Res. Technol., 2023, 23: 5892
[19] Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
[20] Dong B J, Liu W, Zhang T Y, et al. Clarifying the effect of a small amount of Cr content on the corrosion of Ni-Mo steel in tropical marine atmospheric environment [J]. Corros. Sci., 2023, 210: 110813
[21] Wu W, Cheng X Q, Hou H X, et al. Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere [J]. Appl. Surf. Sci., 2018, 436: 80
[22] Wu W, Liu Z Y, Wang Q Y, et al. Improving the resistance of high-strength steel to SCC in a SO2-polluted marine atmosphere through Nb and Sb microalloying [J]. Corros. Sci., 2020, 170: 108693
[23] Mu Y K, He L H, Deng S H, et al. A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility [J]. Acta Mater., 2022, 232: 117975
[24] Zhang S Q, Fan E D, Wan J F, et al. Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel [J]. Corros. Sci., 2018, 139: 83
[25] Yang J L, Lu Y F, Guo Z H, et al. Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2018, 130: 64
[26] Wranglen G. Pitting and sulphide inclusions in steel [J]. Corros. Sci., 1974, 14: 331
[27] Li Z L. Mechanism of the influence of alloying elements in low-alloy steel on corrosion initiation and extension [D]. Beijing: University of Science and Technology Beijing, 2023
[27] 李曌亮. 低合金钢中合金元素对腐蚀萌生与扩展影响机制 [D]. 北京: 北京科技大学, 2023
[28] Wang D, Zhong Q D, Yang J, et al. Effects of Cr and Ni on the microstructure and corrosion resistance of high-strength low alloy steel [J]. J. Mater. Res. Technol., 2023, 23: 36
[29] Qi J J, Huang B Y, Wang Z H, et al. Dependence of corrosion resistance on grain boundary characteristics in a high nitrogen CrMn austenitic stainless steel [J]. J. Mater. Sci. Technol., 2017, 33: 1621
doi: 10.1016/j.jmst.2017.09.016
[1] 杨海云, 刘春泉, 熊芬, 陈敏纳, 谢岳林, 彭龙生, 孙胜, 刘海洲. 超高速激光熔覆制备耐腐蚀涂层研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
[2] 翁硕, 孟超, 朱江峰, 王艾, 常馨, 康妘, 何小田, 赵礼辉. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.
[3] 麻衡, 田会云, 刘宇茜, 王月香, 何康, 崔中雨, 崔洪芝. S420海工钢在不同海洋区带环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[4] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[5] 邓志彬, 胡枭, 刘应彦, 岳航, 张千, 汤海平, 鲁锐. 在役环境磁场对L360管线钢及焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[6] 熊伊铭, 梅婉, 王泽华, 余瑞, 徐诗瑶, 吴磊, 张欣. 磁场作用下5083铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[7] 宋东东, 万红霞, 徐栋, 周倩. 轧制对ZM5镁合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[8] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[9] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[10] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[11] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[12] 胡杰珍, 蓝文杰, 邓培昌, 吴敬权, 曾俊昊. E690钢在热带海洋大气环境下的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[13] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[14] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[15] 王洪伦, 杨华, 蔡辉, 李博文. Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.