Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (4): 927-938     CSTR: 32134.14.1005.4537.2023.308      DOI: 10.11902/1005.4537.2023.308
  研究报告 本期目录 | 过刊浏览 |
Cu含量对Q420钢在货油舱内底板环境下腐蚀行为的影响
刘超1, 代文贺1, 王克俊2, 陈增耀2, 安雁军1, 刘智勇1,2()
1.河北省特种设备监督检验研究院 国家市场监管重点实验室(钢制管子及管件安全评) 石家庄 050061
2.北京科技大学 新材料技术研究院 北京 100083
Effect of Cu Content on Corrosion Behavior of Q420 Steel in an Artificial Solution of Bottom Plate Environment of Cargo Oil Tanks
LIU Chao1, DAI Wenhe1, WANG Kejun2, CHEN Zengyao2, AN Yanjun1, LIU Zhiyong1,2()
1. Key Laboratory of Safety Evaluation of Steel Pipes and Fittings for State Market Regulation, Hebei Special Equipment Supervision and Inspection Institute, Shijiazhuang 050061, China
2. Institute of Advanced Materials & Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

刘超, 代文贺, 王克俊, 陈增耀, 安雁军, 刘智勇. Cu含量对Q420钢在货油舱内底板环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 927-938.
Chao LIU, Wenhe DAI, Kejun WANG, Zengyao CHEN, Yanjun AN, Zhiyong LIU. Effect of Cu Content on Corrosion Behavior of Q420 Steel in an Artificial Solution of Bottom Plate Environment of Cargo Oil Tanks[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 927-938.

全文: PDF(24740 KB)   HTML
摘要: 

对Q420钢进行适当的Cu合金化功能性改进,制备出不同Cu含量(质量分数分别为0.5%、1.0%、1.5%和2.0%)的新型低合金实验钢。利用浸泡实验、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、透射电子显微镜(TEM)等方法对含Cu低合金钢在货油舱内底板点蚀坑内环境(pH 0.85的10%(质量分数)NaCl溶液)中的腐蚀规律与机理进行了研究。结果表明,以铁素体+珠光体为组织特征的1.0Cu低合金钢能够保证在Q420钢强度的水平下具有优异的耐腐蚀性能。随着浸泡时间的延长,5种不同Cu含量钢的腐蚀速率整体呈下降趋势。Cu含量为1%时,腐蚀速率降到0.29 mm/a,与Q420基准钢相比降低了43%。实验证明Cu的添加对Q420钢在货油舱内底板环境下的均匀腐蚀性具有积极的作用。

关键词 Cu货油轮腐蚀低合金钢    
Abstract

Trial low alloy steels based on Q420 steel were prepared by alloying with a little amount of Cu 0.5%, 1.0%, 1.5% and 2.0%, mass fraction. Then their corrosion behavior was assessed in an artificial solution (i.e. 10%NaCl (mass fraction) solution with pH 0.85) as a simulation of the corrosive environment of the bottom plate of cargo oil tanks were studied by means of immersion tests, SEM, XRD, TEM, and other methods. The results indicate that the low alloy steel with 1.0%Cu of a microstructure of ferrite and pearlite can ensure excellent corrosion resistance at the strength level of Q420 steel. The addition of Cu plays a crucial role in the corrosion resistance of the low alloy steel. As the soaking time prolongs, the corrosion rate of the trial steels with 5 different Cu-content shows an overall downward trend. The trial low alloy steel with 1%Cu presents a corrosion rate of 0.29 mm/a, which is 43% lower than the Q420 benchmark steel. The study proves that the addition of Cu has a positive effect on the uniform corrosion of Q420 in the simulated bottom plate environment of cargo oil tanks.

Key wordsCu    cargo tanker    corrosion    low alloy steel
收稿日期: 2023-09-26      32134.14.1005.4537.2023.308
ZTFLH:  TG174.2  
基金资助:国家自然科学基金(52071017)
通讯作者: 刘智勇,E-mail:liuzhiyong7804@126.com,研究方向为材料腐蚀失效机理与防护技术
Corresponding author: LIU Zhiyong,E-mail: liuzhiyong7804@126.com
作者简介: 刘 超,男,1987年生,硕士,高级工程师
SampleCSiMnPAlSCuNiCrNbTiCa
0Cu0.110.471.420.00950.0310.027-0.230.450.0630.0150.05
0.5Cu0.110.361.320.00930.0310.0220.520.220.390.0280.0150.05
1Cu0.100.301.490.00850.0320.0251.030.20.360.0280.010.05
1.5Cu0.0960.221.520.00900.0350.0261.680.220.380.0280.0140.05
2Cu0.0960.231.430.00860.0360.0262.040.210.360.0240.0120.05
表1  不同成分实验钢的化学成分 (mass fraction / %)
图1  不同成分实验钢的金相组织
图2  不同成分实验钢的EBSD中IPF图和平均晶粒尺寸图
图3  1Cu钢的透射电镜图和析出相能谱
图4  5种实验钢的硬度、抗拉强度和屈服强度以及不同温度下的冲击功
图5  5种实验钢在模拟液中浸泡不同时间的腐蚀速率
图6  5种实验钢在模拟液中浸泡3和30 d后的宏观形貌
图7  5种实验钢在模拟液中浸泡30 d且除锈后表面微观形貌图及EDS分析结果
图8  浸泡30 d后5种实验钢锈层截面中的元素面分布
图9  实验钢浸泡30 d后腐蚀产物的XRD谱与α*/γ值
图10  1Cu钢浸泡30 d后锈层的XPS图谱
图11  5种实验钢在模拟液中的极化曲线
Sample0 d30 d
Ecorr / mVIcorr / μAβa / mVβc / mVEcorr / mVIcorr / μAβa / mVβc / mV
0Cu-486.2110.754-131.8688.343-629.62796.958158.986244.087
0.5Cu-482.1319.586120.82263-471.46235.96469.748118.738
1Cu-468.2936.539128.81271.185-574.35685.181236.979342.505
1.5Cu-482.3619.339118.78765.256-488.63776.226148.138417.805
2Cu-491.3417.433131.16488.166-421.03782.647134.684239.656
表2  5种实验钢极化曲线的拟合结果
图12  5种实验钢浸泡不同时间后的EIS
图13  EIS拟合的等效电路及Rct + Rf拟合值
[1] Yang J W, Han C L, Xu J, et al. Development of corrosion resistant steel for cargo oil tanks of crude oil tankers [J]. Corros. Sci. Prot. Technol., 2013, 25: 411
[1] 杨建炜, 韩承良, 许 静 等. 原油油船货油舱耐腐蚀钢的开发 [J]. 腐蚀科学与防护技术, 2013, 25: 411
[2] Birbilis N, Zhu Y M, Kairy S K, et al. A closer look at constituent induced localised corrosion in Al-Cu-Mg alloys [J]. Corros. Sci., 2016, 113: 160
[3] Guo Z Q, Pan J, Zhu D Q, et al. Co-reduction of copper smelting slag and nickel laterite to prepare Fe-Ni-Cu alloy for weathering steel [J]. JOM, 2018, 70: 150
[4] Pourmajidian M, Mahmudi R, Geranmayeh A R, et al. Effect of Zn and Sb additions on the impression creep behavior of lead-free Sn-3.5Ag solder alloy [J]. J. Electron. Mater., 2016, 45: 764
[5] Yang Y, Jiang C, Cheng X Q, et al. Effect of Sb on the corrosion behavior of low-alloy steels in a simulated polluted marine atmosphere [J]. J. Mater. Eng. Perform., 2020, 29: 2648
[6] Kim Y, Buchheit R G, Kotula P G. Effect of alloyed Cu on localized corrosion susceptibility of Al-Cu solid solution alloys—Surface characterization by XPS and STEM [J]. Electrochim. Acta, 2010, 55: 7367
[7] Samusawa I, Nakayama S. Influence of plastic deformation and Cu addition on corrosion of carbon steel in acidic aqueous solution [J]. Corros. Sci., 2019, 159: 108122
[8] Hao X H, Dong J H, Wei J, et al. Effect of Cu on corrosion behavior of low alloy steel under the simulated bottom plate environment of cargo oil tank [J]. Corros. Sci., 2017, 121: 84
[9] Imai S, Katoh K, Funatsu Y. Development of new anti-corrosion steel for COTs of crude oil carrier [J]. Shipbuild. Technol., 2007, 11: 4
[10] Determination of resistance to intergranular corrosion of stainless steels-Part 1: Austenitic and ferritic-austenitic (duplex) stainless steels-Corrosion test in nitric acid medium by measurement of loss in mass (Huey test) [S]. ISO, 1998
[10] 不锈钢耐晶间腐蚀的测定 第1部分: 奥氏体和铁素体奥氏体(二重)不锈钢 用失重测定法在硝酸介质中的腐蚀试验(Huey试验) [S]. ISO, 1998
[11] Xi T, Shahzad M B, Xu D K, et al. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel [J]. Mater. Sci. Eng., 2017, 71C: 1079
[12] Hara S, Kamimura T, Miyuki H, et al. Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge [J]. Corros. Sci., 2007, 49: 1131
[13] Liu Z Y, Li X G, Cheng Y F. Mechanistic aspect of near-neutral pH stress corrosion cracking of pipelines under cathodic polarization [J]. Corros. Sci., 2012, 55: 54
[14] Wang Y H, Zhang X M, Pan Y Y, et al. Analysis of oil content in drying petroleum sludge of tank bottom [J]. Int. J. Hyd. Energy, 2017, 42: 18681
[15] Schmitt G. Effect of elemental sulfur on corrosion in sour gas systems [J]. Corrosion, 1991, 47: 285
[16] San X Y, Zhang B, Wu B, et al. Investigating the effect of Cu-rich phase on the corrosion behavior of Super 304H austenitic stainless steel by TEM [J]. Corros. Sci., 2018, 130: 143
[17] Garfias-Mesias L F, Sykes J M, Tuck C D S. The effect of phase compositions on the pitting corrosion of 25 Cr duplex stainless steel in chloride solutions [J]. Corros. Sci., 1996, 38(8): 1319
[18] Hermas A A, Ogura K, Adachi T. Accumulation of copper layer on a surface in the anodic polarization of stainless steel containing Cu at different temperatures [J]. Electrochim. Acta, 1995, 40(7): 837
[1] 王博, 安士忠, 郭俊卿, 纪运广, 李志强. 商用MB1MB8镁合金在NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2024, 44(4): 1073-1080.
[2] 马晓伟, 薛荣洁, 王涛涛, 杨亮, 刘珍光. 锆基非晶合金与传统合金在海水中的耐腐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
[3] 贾静焕, 骆晨, 孙志华, 詹中伟, 赵明亮. 航空发动机典型连接件腐蚀仿真分析[J]. 中国腐蚀与防护学报, 2024, 44(4): 979-986.
[4] 彭文山, 邢少华, 钱峣, 蔺存国, 侯健, 张大磊. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[5] 樊志彬, 高智悦, 宗立君, 吴亚平, 李辛庚, 姜波, 杜宝帅. 1050A铝合金在山东不同典型环境中的大气腐蚀行为特征研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1055-1063.
[6] 乔泽, 李清泉, 刘晓航, 李燚周. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[7] 沈坚, 吴柯娴, 何晓宇, 方兴龙. 我国不同地区钢材大气腐蚀预测算法评估与筛选[J]. 中国腐蚀与防护学报, 2024, 44(4): 939-948.
[8] 杨海云, 刘春泉, 熊芬, 陈敏纳, 谢岳林, 彭龙生, 孙胜, 刘海洲. 超高速激光熔覆制备耐腐蚀涂层研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
[9] 林一, 刘涛, 郭彦兵, 阮晴, 郭章伟, 董丽华. 船用低温钢焊接材料的研发与腐蚀方法评价[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[10] 杜广, 芦国强, 邓龙辉, 蒋佳宁, 曹学强. 铝含量对镍铝合金在稀硫酸溶液中的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1011-1021.
[11] 巫海亮, 陈宇强, 黄亮, 顾宏宇, 孙宏博, 刘佳俊, 王乃光, 宋宇峰. 高铁散热器用3003铝合金焊接隔板的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[12] 吴洋, 安易强, 王力伟, 崔中雨. 镁铝合金在模拟低温条件下大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[13] 王玉雪, 朱澳鸿, 王力伟, 崔中雨. 两种新型Ni-Cr-Mo-V钢在模拟海水环境中的腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.
[14] 王刚, 李昭, 王涛, 段腾, 杜翠薇. 光伏桩基用钢在新疆土壤中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 987-992.
[15] 翁硕, 孟超, 朱江峰, 王艾, 常馨, 康妘, 何小田, 赵礼辉. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.