Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 716-724     CSTR: 32134.14.1005.4537.2023.230      DOI: 10.11902/1005.4537.2023.230
  研究报告 本期目录 | 过刊浏览 |
904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究
李禅1, 王庆田2, 杨承刚1, 张宪伟3, 韩冬傲1, 刘雨薇1, 刘智勇3()
1.生态环境部核与辐射安全中心 北京 100082
2.中国核动力研究设计院 核反应堆系统设计技术重点实验室 成都 610213
3.北京科技大学 国家材料腐蚀与防护科学数据中心 北京 100083
Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants
LI Chan1, WANG Qingtian2, YANG Chenggang1, ZHANG Xianwei3, HAN Dongao1, LIU Yuwei1, LIU Zhiyong3()
1. Nuclear and Radiation Safety Center, Ministry of Ecology and Environment, Beijing 100082, China
2. Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
3. National Materials Corrosion and Protection Data Center, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
Chan LI, Qingtian WANG, Chenggang YANG, Xianwei ZHANG, Dongao HAN, Yuwei LIU, Zhiyong LIU. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 716-724.

全文: PDF(7102 KB)   HTML
摘要: 

采用动电位极化曲线、电化学阻抗谱(EIS)以及U形弯浸泡实验,研究了原始、敏化和固溶等3种微观组织状态下904L超级奥氏体不锈钢在模拟核电一回路环境中的电化学和应力腐蚀开裂(SCC)行为及机理。结果表明:904L不锈钢在模拟核电一回路中的腐蚀过程基本由电化学活化控制。温度对原始、敏化和固溶等组织状态下的904L不锈钢的耐腐蚀性能有很大影响,随温度升高,电化学反应极化电阻降低,钝化区变窄,腐蚀电位下降,3种组织状态的904L不锈钢耐蚀性均急剧降低。3种组织状态的904L不锈钢在模拟核电一回路环境中均存在一定SCC敏感性。表面腐蚀产物膜内层为均匀较薄的黑色腐蚀产物,外层为尺寸较大的颗粒状白色腐蚀产物。敏化组织的904L不锈钢SCC敏感性最高,固溶处理能降低其SCC敏感性。

关键词 超级奥氏体不锈钢应力腐蚀电化学特性一回路核电    
Abstract

In this work, the electrochemical properties and stress corrosion cracking (SCC) behavior of 904L super-austenitic stainless steel with various kinds of microstructure in simulated primary water were studied through potentiodynamic polarization curve measurement, electrochemical impedance spectroscopy (EIS) and U-bend immersion tests. The results show that the corrosion process of 904L stainless steel in simulated primary water is completely controlled by electrochemical reaction. Temperature has a strong influence on the corrosion resistance of 904L stainless steel. With the increase of temperature, the polarization resistance decreases; the passive range narrows down; corrosion potential shifts negatively, and corrosion resistance declines sharply. U-bend immersion test results prove that 904L stainless steel with the three kinds of microstructure has certain SCC susceptibility in simulated primary water. The corrosion products exert a two-layered structure, where the inner layer is uniform and thin black corrosion product, and the outer layer is granular and coarse white corrosion products. Among the three kinds of microstructure, the sensitized 904L stainless steel presents the highest SCC susceptibility, while solid solution treatment can decrease SCC susceptibility.

Key wordssuper-austenitic stainless steel    stress corrosion cracking    electrochemical behavior    primary water    nuclear power plant
收稿日期: 2023-07-24      32134.14.1005.4537.2023.230
ZTFLH:  TG174.2  
基金资助:国家自然基金(U22B2065);核反应堆系统设计技术重点实验室开放课题
通讯作者: 刘智勇,E-mail:liuzhiyong7804@126.com,研究方向为材料应力腐蚀行为与机理、局部腐蚀电化学监测检测技术
Corresponding author: LIU Zhiyong, E-mail: liuzhiyong7804@126.com
作者简介: 李 禅,男,1981年生,硕士,高级工程师
Sample stateσs / MPaσb / MPaδ / %ψ / %
As-received583.5268.64873
Sensitized573.62775175
Solid solution600280.74976
表1  实验用904L不锈钢的力学性能
图1  U形弯浸泡试样尺寸
图2  904L不锈钢金相照片及EBSD结果
图3  3种处理态904L不锈钢的XRD谱图
图4  原始和不同热处理态的904L不锈钢在不同温度下测试溶液中的极化曲线
T / oCAs-receivedSensitizedSolid solution

Ecorr

mV

Icorr

μA·cm-2

Etp

mV

Ecorr

mV

Icorr

μA·cm-2

Etp

mV

Ecorr

mV

Icorr

μA·cm-2

Etp

mV

2535.633.212658.1240.3212016.70.67521024
1006.50810.2154-24.3823.4100-10.426.41222
200-50.52404116-1662642-15.3-30.4141.4125.6
300-102580075.4-2279931-107-88.9340.6118.4
表2  3种不同处理态904L不锈钢在不同温度下测试溶液中的极化曲线拟合结果
图5  3种不同处理态的904L不锈钢在不同温度下测试溶液中的阻抗谱
图6  阻抗谱等效电路图
Sample stateT / oC

Rs

Ω·cm2

Qf

Rf

Ω·cm2

Qdl

Rct

Ω·cm2

Y0

Ω-1·cm-2·s-n

n

Y0

Ω-1·cm-2·s-n

n
As-received2518.459.5 × 10-20.84578.27.2 × 1050.3183.8 × 103
1000.641.3 × 10-610.982.6 × 10-20.6697.9 × 10-2
2001.9 × 10-31.8 × 10-610.532.0 × 10-10.7625.3 × 10-1
3005.5 × 10-91.7 × 10-610.551.4 × 10-10.9215.5 × 10-1
Sensitized257.111.1 × 10-61106.53.6 × 10-20.7806.4 × 10-2
1000.737.9 × 10-20.85212.792.2 × 10-215.0 × 101
2002.1 × 10-51.4 × 10-610.6725.0 × 10-10.8751.8 × 101
3006.9 × 10-51.6 × 10-610.5639.4 × 10-20.8513.57
Solid solution2510.422.2 × 10-40.82557.15.7 × 10-40.9708.8 × 1013
1004.187.2 × 10-40.92534.51.1 × 10-313.8 × 104
2002.585.2 × 10-4111.96.5 × 10-415.7 × 10-3
3000.337.2 × 10-30.8270.23.2 × 10-10.9014.32
表3  3种不同组织904L不碳钢在不同温度环境下阻抗拟合结果
图7  不同处理态904L不锈钢U弯样品在溶液中浸泡不同时间后的宏观形貌
图8  不同处理态904L不锈钢U弯样品在测试溶液中浸泡不同时间后的微观形貌
1 Hou Q, Liu Z Y, Li C T, et al. The mechanism of stress corrosion cracking of Alloy 690TT in a caustic solution containing lead [J]. Corros. Sci., 2017, 128: 154
doi: 10.1016/j.corsci.2017.09.015
2 Sun B Z, Liu Z Y, He Y D, et al. A new study for healing pitting defects of 316L stainless steel based on microarc technology [J]. Corros. Sci., 2021, 187: 109505
doi: 10.1016/j.corsci.2021.109505
3 Pan Y, Sun B Z, Liu Z Y, et al. Hydrogen effects on passivation and SCC of 2205 DSS in acidified simulated seawater [J]. Corros. Sci., 2022, 208: 110640
doi: 10.1016/j.corsci.2022.110640
4 Wang J X, Shi W, Xiang S, et al. Study of the corrosion behaviour of sensitized 904L austenitic stainless steel in Cl- solution [J]. Corros. Sci., 2021, 181: 109234
doi: 10.1016/j.corsci.2020.109234
5 Lv Y X. Analysis of Cl- corrosion resistance of high Mo super austenitic stainless steels [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 765
5 吕迎玺. 高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析 [J]. 中国腐蚀与防护学报, 2022, 42: 765
doi: 10.11902/1005.4537.2022.100
6 Moayed M H, Newman R C. Deterioration in critical pitting temperature of 904L stainless steel by addition of sulfate ions [J]. Corros. Sci., 2006, 48: 3513
doi: 10.1016/j.corsci.2006.02.010
7 Saito T, Masaki H, Mukhlis F A, et al. Crystallographic characterization of stress corrosion cracking initiation on type316L stainless steel in high temperature and high pressure water [J]. J. Phys.: Conf. Ser., 2009, 165: 012009
8 Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
8 刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513
doi: 10.11902/1005.4537.2021.130
9 Deng P, Han E H, Peng Q J, et al. Corrosion behavior and mechanism of irradiated 304 nuclear grade stainless steel in high-temperature water [J]. Acta Metall. Sin. (Eng. Lett.), 2021, 34: 174
10 Li Z Y, Cai Z B, Zhou T, et al. Characteristics and formation mechanism of oxide film on 304 stainless steel in high temperature water [J]. Mater. Chem. Phys., 2019, 222: 267
doi: 10.1016/j.matchemphys.2018.10.029
11 Sanchez R G, Huang X, Liu P. Effect of water density/pressure on the corrosion behavior of 304 and 310 stainless steels [J]. Oxid. Met., 2018, 89: 165
doi: 10.1007/s11085-017-9812-7
12 Lou X Y, Song M, Emigh P W, et al. On the stress corrosion crack growth behaviour in high temperature water of 316L stainless steel made by laser powder bed fusion additive manufacturing [J]. Corros. Sci., 2017, 128: 140
doi: 10.1016/j.corsci.2017.09.017
13 Congleton J, Charles E A, Sui G. Review on effect of cyclic loading on environmental assisted cracking of alloy 600 in typical nuclear coolant waters [J]. Corros. Sci., 2001, 43: 2265
doi: 10.1016/S0010-938X(01)00023-3
14 Wang Z H, Takeda Y. Mechanistic understanding of the roles of hydrogen in modification of oxide film of alloy 600 in high temperature high pressure water environment [J]. Corros. Sci., 2020, 170: 108656
doi: 10.1016/j.corsci.2020.108656
15 Liu Z Y, Hou Q, Li C T, et al. Correlation between grain boundaries, carbides and stress corrosion cracking of Alloy 690TT in a high temperature caustic solution with lead [J]. Corros. Sci., 2018, 144: 97
doi: 10.1016/j.corsci.2018.08.010
16 Liu C S, Liu J, Chen C F, et al. Temperature change induce crack mode transition of 316L stainless steel in H2S environment revealed by dislocation configurations [J]. Corros. Sci., 2021, 193: 109896
doi: 10.1016/j.corsci.2021.109896
17 Fujii T, Suzuki M, Shimamura Y. Susceptibility to intergranular corrosion in sensitized austenitic stainless steel characterized via crystallographic characteristics of grain boundaries [J]. Corros. Sci., 2022, 195: 109946
doi: 10.1016/j.corsci.2021.109946
18 Liu Z Y, Li X G, Du C W, et al. Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment [J]. Corros. Sci., 2008, 50: 2251
doi: 10.1016/j.corsci.2008.05.011
19 Liu Z Y, Lu L, Huang Y Z, et al. Mechanistic aspect of non-steady electrochemical characteristic during stress corrosion cracking of an X70 pipeline steel in simulated underground water [J]. Corrosion, 2014, 70: 678
doi: 10.5006/1153
20 Liu Z Y, Li X G, Cheng Y F. Electrochemical state conversion model for occurrence of pitting corrosion on a cathodically polarized carbon steel in a near-neutral pH solution [J]. Electrochim. Acta, 2011, 56: 4167.
doi: 10.1016/j.electacta.2011.01.100
21 Sun H, Wu X Q, Han E H, et al. Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water [J]. Corros. Sci., 2012, 59: 334
doi: 10.1016/j.corsci.2012.03.022
22 Huang J B, Wu X Q, Han E H. Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments [J]. Corros. Sci., 2010, 52: 3444
doi: 10.1016/j.corsci.2010.06.016
23 Kocijan A, Donik Č, Jenko M. Electrochemical and XPS studies of the passive film formed on stainless steels in borate buffer and chloride solutions [J]. Corros. Sci., 2007, 49: 2083
doi: 10.1016/j.corsci.2006.11.001
24 Cheng X Q, Feng Z C, Li C T, et al. Investigation of oxide film formation on 316L stainless steel in high-temperature aqueous environments [J]. Electrochim. Acta, 2011, 56: 5860
doi: 10.1016/j.electacta.2011.04.127
[1] 岑远遥, 廖光萌, 朱玉琴, 赵方超, 刘聪, 何建新, 周堃. 基于布拉格光纤光栅的铝合金应力腐蚀裂纹扩展监测技术[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[2] 彭立园, 吴欣强, 张兹瑜, 谭季波. 压水堆核电厂热态功能试验水化学与设备材料腐蚀关系的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 529-539.
[3] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[4] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[5] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[6] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[7] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[8] 贺志豪, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[9] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[10] 廖家鹏, 毛玉龙, 金德升, 厉井钢. 锆合金包壳在模拟压水堆一回路冷却剂中的表面污垢沉积行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 197-201.
[11] 陈婷婷, 武晓雷, 韩培德. SMAT技术制备梯度纳米孪晶结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[12] 李柯萱, 宋龙飞, 李晓荣. pH值对X100管线钢在CO32-/HCO3-溶液中的电化学与应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 779-784.
[13] 刘宇桐, 陈震宇, 朱忠亮, 冯瑞, 包汉生, 张乃强. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[14] 刘保平, 张志明, 王俭秋, 韩恩厚, 柯伟. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[15] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.