|
|
压水堆核电厂热态功能试验水化学与设备材料腐蚀关系的研究进展 |
彭立园1,2, 吴欣强1( ), 张兹瑜1, 谭季波1 |
1.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 2.中国科学技术大学材料科学与工程学院 合肥 230026 |
|
Review on Relationship Between Hot Functional Test Water Chemistry and Corrosion Behavior of Related Component Materials in Pressurized Water Reactor Nuclear Power Plants |
PENG Liyuan1,2, WU Xinqiang1( ), ZHANG Ziyu1, TAN Jibo1 |
1. CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2. School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China |
引用本文:
彭立园, 吴欣强, 张兹瑜, 谭季波. 压水堆核电厂热态功能试验水化学与设备材料腐蚀关系的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 529-539.
Liyuan PENG,
Xinqiang WU,
Ziyu ZHANG,
Jibo TAN.
Review on Relationship Between Hot Functional Test Water Chemistry and Corrosion Behavior of Related Component Materials in Pressurized Water Reactor Nuclear Power Plants[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 529-539.
1 |
Garbett K, Mantell M A. Corrosion product behaviour during hot functional tests and normal operation in cycle 1 at Sizewell B [A]. Water Chemistry of Nuclear Reactor Systems 7, Vol.2 [C]. Bournemouth: British Nuclear Energy Society, 1996: 443
|
2 |
Kadoya M. Countermeasures for radiation dose reduction at Ikata unit No.3 [A]. Proceedings of the International Congress of the International Radiation Protection Association [C]. Tokyo, Japan: Japan Health Physics Society, 2000
|
3 |
Ito A, Murata K, Yokoyama J. Water chemistry during startup testing at the latest PWR: Genkai unit No.4 [A]. Proceedings of the JAIF International Conference on Water Chemistry in Nuclear Power Plants [C]. Tokyo, Japan: Japan Atomic Industrial Forum, Inc., 1998: 806
|
4 |
Nishizawa E. Primary water chemistry improvement for radiation exposure reduction at Japanese PWR plants [C]. Washington, DC: U.S. Nuclear Regulatory Commission, 1995
|
5 |
Cubitt M, Garbett K, Lancaster G, et al. Shutdown corrosion product, radiation field and personnel dose development at the Sizewell B PWR [A]. Proceedings of the Xth International Conference on Water Chemistry of Nuclear Reactor Systems [C]. 2004, San Francisco
|
6 |
Bates J, Lancaster G, Scrancher M, et al. Corrosion product monitoring during the seventh refuelling outage at Sizewell B [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems [C]. Jeju Island, South Korea, 2006
|
7 |
Bates C, Garbett K, Hinds K, et al. Development of corrosion product behaviour and radiation fields at the Sizewell B PWR from 1995 to 2008 [J]. VGB PowerTech, 2008, 88: 52
|
8 |
Engler N, Brun C, Guillodo M. Optimization of SG tubes prefilming process to reduce nickel release [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems [C]. Berlin, 2008: 251
|
9 |
Matsuura M, Tsukamoto M, Nishiura H, et al. Application of zinc injection to reduce radiation sources at Takahama unit 4 [A]. Proceedings of the Symposium on Water Chemistry and Corrosion in Nuclear Power Plants in Asia [C]. Tokyo, Japan: Atomic Energy Society of Japan, Division of Water Chemistry, 2009: 309
|
10 |
Betova I, Bojinov M, Kinnunen P, et al. Influence of Zn on the oxide layer on AISI 316L(NG) stainless steel in simulated pressurised water reactor coolant [J]. Electrochim. Acta, 2009, 54: 1056
doi: 10.1016/j.electacta.2008.08.040
|
11 |
Huang J B, Liu X H, Han E-H, et al. Influence of Zn on oxide films on Alloy 690 in borated and lithiated high temperature water [J]. Corros. Sci., 2011, 53: 3254
doi: 10.1016/j.corsci.2011.06.001
|
12 |
Liu X H, Wu X Q, Han E-H. Influence of Zn injection on characteristics of oxide film on 304 stainless steel in borated and lithiated high temperature water [J]. Corros. Sci., 2011, 53: 3337
doi: 10.1016/j.corsci.2011.06.011
|
13 |
Liu X H, Wu X Q, Han E-H. Electrochemical and surface analytical investigation of the effects of Zn concentrations on characteristics of oxide films on 304 stainless steel in borated and lithiated high temperature water [J]. Electrochim. Acta, 2013, 108: 554
doi: 10.1016/j.electacta.2013.06.131
|
14 |
Zhang S H, Shi R X, Tan Y. Comparison of the solubility of ZnFe2O4, Fe3O4 and Fe2O3 in high temperature water [J]. J. Solution Chem., 2018, 47: 1112
doi: 10.1007/s10953-018-0779-z
|
15 |
Hayakawa H, Mino Y, Yamada K, et al. Zinc injection during hot functional test (HFT) in Tomari unit 3 [A]. Proceedings of the Symposium on Water Chemistry and Corrosion in Nuclear Power Plants in Asia [C]. Nagoya, Aichi, Japan, 2009: 206
|
16 |
Hitoshi H, Mino Y, Nakahama S, et al. Zinc injection during hot functional test (HFT) in Tomari unit 3 [C]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems. Quebec, Canada, 2010
|
17 |
Hayakawa H, Mino Y, Nakahama S, et al. Effects of zinc injection from hot functional test at Tomari unit 3 [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems [C]. Paris, France, 2012
|
18 |
Jiang L, Meng X B, Wu X D. First application of advanced technical for chemistry control during HFT for AP1000 [A]. Proceedings of the Chinese Nuclear Society [C]. Yantai, 2021
|
18 |
姜 磊, 孟宪波, 吴旭东. AP1000机组热态功能试验化学控制新技术的首次应用 [A]. 中国核学会2021年学术年会 [C]. 烟台, 2021
|
19 |
DeVito R L, Buckley D J, Byers W A, et al. Westinghouse experience with AP1000 plant hot functional testing chemistry [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems [C]. San Francisco, United States, 2018
|
20 |
Tawaki S, Koyasu T, Katayama Y, et al. Improvement of shutdown chemistry for outer oxide layer removal [A]. Proceedings of the JAIF International Conference on Water Chemistry in Nuclear Power Plants [C]. Japan, 1991
|
21 |
Zhang Z M, Wang J Q, Han E-H, et al. Analysis of surface oxide films formed in hydrogenated primary water on Alloy 690TT samples with different surface states [J]. J. Mater. Sci. Technol., 2014, 30: 1181
doi: 10.1016/j.jmst.2014.09.002
|
22 |
Zhang Z M, Wang J Q, Han E-H, et al. Influence of dissolved oxygen on oxide films of Alloy 690TT with different surface status in simulated primary water [J]. Corros. Sci., 2011, 53: 3623
doi: 10.1016/j.corsci.2011.07.012
|
23 |
Zhang L F, Chen K, Wang J M, et al. Effects of zinc injection on stress corrosion cracking of cold worked austenitic stainless steel in high-temperature water environments [J]. Scr. Mater., 2017, 140: 50
doi: 10.1016/j.scriptamat.2017.05.032
|
24 |
Betova I, Bojinov M, Karastoyanov V, et al. Effect of water chemistry on the oxide film on Alloy 690 during simulated hot functional testing of a pressurised water reactor [J]. Corros. Sci., 2012, 58: 20
doi: 10.1016/j.corsci.2012.01.002
|
25 |
Peng L Y, Zhang Z Y, Tan J B, et al. Effects of boric acid and lithium hydroxide on the corrosion behaviors of 316LN stainless steel in simulating hot functional test high-temperature pressurized water [J]. Corros. Sci., 2022, 198: 110157
doi: 10.1016/j.corsci.2022.110157
|
26 |
Betova I, Bojinov M, Karastoyanov V, et al. Optimisation of the water chemistry during hot functional test of a PWR for improved stability of the passive film on Alloy 690 [A]. Proceedings of the Nuclear Plant Chemistry Conference (NPC) [C]. Paris, France, 2012
|
27 |
Sun H, Wu X Q, Han E-H, et al. Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304 SS in borated and lithiated high temperature water [J]. Corros. Sci., 2012, 59: 334
doi: 10.1016/j.corsci.2012.03.022
|
28 |
Liu X H, Han E-H, Wu X Q. Effects of pH value on characteristics of oxide films on 316L stainless steel in Zn-injected borated and lithiated high temperature water [J]. Corros. Sci., 2014, 78: 200
doi: 10.1016/j.corsci.2013.09.017
|
29 |
Wang J Z, Wang J Q, Ming H L, et al. Effect of pH on corrosion behavior of 316L stainless steel in hydrogenated high temperature water [J]. Mater. Corros., 2018, 69: 580
|
30 |
Bojinov M, Kinnunen P, Lundgren K, et al. A mixed-conduction model for the oxidation of stainless steel in a high-temperature electrolyte: estimation of kinetic parameters of oxide layer growth and restructuring [J]. J. Electrochem. Soc., 2005, 152: B250
doi: 10.1149/1.1931447
|
31 |
Robertson J. The mechanism of high temperature aqueous corrosion of steel [J]. Corros. Sci., 1989, 29: 1275
doi: 10.1016/0010-938X(89)90120-0
|
32 |
Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels [J]. Corros. Sci., 1991, 32: 443
doi: 10.1016/0010-938X(91)90125-9
|
33 |
Montemor M F, Ferreira M G S, Walls M, et al. Influence of pH on properties of oxide films formed on type 316L stainless steel, Alloy 600, and Alloy 690 in high-temperature aqueous environments [J]. Corrosion, 2003, 59: 11
doi: 10.5006/1.3277531
|
34 |
Liao J P, Mao Y L, Jin D S, et al. Laboratory simulation of crud deposition on Zr-alloy fuel cladding in simulated pressurized water reactor primary coolant [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 197
|
34 |
廖家鹏, 毛玉龙, 金德升 等. 锆合金包壳在模拟压水堆一回路冷却剂中的表面污垢沉积行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 197
doi: 10.11902/1005.4537.2022.022
|
35 |
Lim D S, Jeon S H, Bae B J, et al. Effect of zinc addition scenarios on general corrosion of Alloy 690 in borated and lithiated water at 330oC [J]. Corros. Sci., 2021, 189: 109627
doi: 10.1016/j.corsci.2021.109627
|
36 |
Attanasio S A, Morton D S. Measurement of the nickel/nickel oxide transition in Ni-Cr-Fe alloys and updated data and correlations to quantify the effect of aqueous hydrogen on primary water SCC[R]. Schenectady, NY: Lockheed Martin Corporation, 2003
|
37 |
Andresen P L, Hickling J, Ahluwalia A, et al. Effects of hydrogen on stress corrosion crack growth rate of nickel alloys in high-temperature water [J]. Corrosion, 2008, 64: 707
doi: 10.5006/1.3278508
|
38 |
Bai J X, Bosch R W, Ritter S, et al. Electrochemical and spectroscopic characterization of oxide films formed on Alloy 182 in simulated boiling water reactor environment: effect of dissolved hydrogen [J]. Corros. Sci., 2018, 133: 204
doi: 10.1016/j.corsci.2018.01.024
|
39 |
Nakagawa T, Totsuka N, Terachi T, et al. Influence of dissolved hydrogen on oxide film and PWSCC of Alloy 600 in PWR primary water [J]. J. Nucl. Sci. Technol., 2003, 40: 39
doi: 10.1080/18811248.2003.9715330
|
40 |
Jeon S H, Lee E H, Hur D H. Effects of dissolved hydrogen on general corrosion behavior and oxide films of alloy 690TT in PWR primary water [J]. J. Nucl. Mater., 2017, 485: 113
doi: 10.1016/j.jnucmat.2016.12.020
|
41 |
Lee H B, Chen J J, Meng S, et al. Characterization of oxide layers formed on type 316 stainless steel exposed to the simulated PWR primary water environment with varying dissolved hydrogen and zinc concentrations [J]. J. Nucl. Mater., 2021, 556: 153193
doi: 10.1016/j.jnucmat.2021.153193
|
42 |
Qiu Y B, Shoji T, Lu Z P. Effect of dissolved hydrogen on the electrochemical behaviour of Alloy 600 in simulated PWR primary water at 290oC [J]. Corros. Sci., 2011, 53: 1983
doi: 10.1016/j.corsci.2011.02.020
|
43 |
De Araújo Figueiredo C, Bosch R W, Vankeerberghen M. Electrochemical investigation of oxide films formed on nickel alloys 182, 600 and 52 in high temperature water [J]. Electrochim. Acta, 2011, 56: 7871
doi: 10.1016/j.electacta.2011.05.077
|
44 |
Xu J, Shoji T, Jang C. The effects of dissolved hydrogen on the corrosion behavior of Alloy 182 in simulated primary water [J]. Corros. Sci., 2015, 97: 115
doi: 10.1016/j.corsci.2015.04.021
|
45 |
Nong J, Guo Q, Xu J, et al. Effects of alternating dissolved oxygen and dissolved hydrogen on the corrosion behavior of alloy 52 in high temperature high pressure water [J]. J. Nucl. Mater., 2020, 540: 152396
doi: 10.1016/j.jnucmat.2020.152396
|
46 |
Peng Q J, Hou J, Sakaguchi K, et al. Effect of dissolved hydrogen on corrosion of Inconel Alloy 600 in high temperature hydrogenated water [J]. Electrochim. Acta, 2011, 56: 8375
doi: 10.1016/j.electacta.2011.07.032
|
47 |
Dong L J, Peng Q J, Zhang Z M, et al. Effect of dissolved hydrogen on corrosion of 316NG stainless steel in high temperature water [J]. Nucl. Eng. Des., 2015, 295: 403
doi: 10.1016/j.nucengdes.2015.08.030
|
48 |
Dan T C, Lü Z P, Wang J Q, et al. Crack growth behavior for stress corrosion cracking of 690 alloy in high temperature water [J]. Acta Metall. Sin., 2010, 46: 1267
doi: 10.3724/SP.J.1037.2010.01267
|
48 |
但体纯, 吕战鹏, 王俭秋 等. 690合金在高温水中的应力腐蚀裂纹扩展行为 [J]. 金属学报, 2010, 46: 1267
doi: 10.3724/SP.J.1037.2010.00199
|
49 |
Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
|
49 |
刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513
doi: 10.11902/1005.4537.2021.130
|
50 |
Bai J X, Ritter S, Seifert H P, et al. Using tapered specimens to study the effect of hydrogen and surface finish on SCC initiation in Alloy 182 under boiling water reactor conditions [J]. Corros. Eng. Sci. Technol., 2017, 52: 558
doi: 10.1080/1478422X.2017.1340245
|
51 |
Terachi T, Totsuka N, Yamada T, et al. Influence of dissolved hydrogen on structure of oxide film on Alloy 600 formed in primary water of pressurized water reactors [J]. J. Nucl. Sci. Technol., 2003, 40: 509
doi: 10.1080/18811248.2003.9715385
|
52 |
Zhong X Y, Bali S C, Shoji T. Effects of dissolved hydrogen and surface condition on the intergranular stress corrosion cracking initiation and short crack growth behavior of non-sensitized 316 stainless steel in simulated PWR primary water [J]. Corros. Sci., 2017, 118: 143
doi: 10.1016/j.corsci.2017.02.003
|
53 |
Bai J X, Ritter S, Seifert H P, et al. Stress corrosion cracking initiation and short crack growth behaviour in Alloy 182 weld metal under simulated boiling water reactor hydrogen water chemistry conditions [J]. Corros. Sci., 2018, 131: 208
doi: 10.1016/j.corsci.2017.11.021
|
54 |
Rebak R B, Szklarska-Smialowska Z. Effect of partial pressure of hydrogen on IGSCC of Alloy 600 in PWR primary water [J]. Corrosion, 1991, 47: 754
doi: 10.5006/1.3585185
|
55 |
Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
|
55 |
焦 洋, 张胜寒, 檀 玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417
|
56 |
Tigeras A, Stellwag B, Engler N, et al. Understanding the zinc behaviour in PWR primary coolant: a comparison between French and German experience [J]. VGB PowerTech, 2008, 88: 61
|
57 |
Arjmand F, Wang J M, Zhang L F. Zinc addition and its effect on the corrosion behavior of a 30% cold forged Alloy 690 in simulated primary coolant of pressurized water reactors [J]. J. Alloy. Compd., 2019, 791: 1176
doi: 10.1016/j.jallcom.2019.03.362
|
58 |
Holdsworth S, Scenini F, Burke M G, et al. The effect of high-temperature water chemistry and dissolved zinc on the cobalt incorporation on type 316 stainless steel oxide [J]. Corros. Sci., 2018, 140: 241
doi: 10.1016/j.corsci.2018.05.041
|
59 |
Chajduk E, Bojanowska-Czajka A. Corrosion mitigation in coolant systems in nuclear power plants [J]. Prog. Nucl. Energ., 2016, 88: 1
doi: 10.1016/j.pnucene.2015.11.011
|
60 |
Hosokawa H, Nagase M. Investigation of cobalt deposition behavior with zinc injection on stainless steel under BWR conditions [J]. J. Nucl. Sci. Technol., 2004, 41: 682
doi: 10.1080/18811248.2004.9715533
|
61 |
Inagaki H, Nishikawa A, Sugita Y, et al. Synergy effect of simultaneous zinc and nickel addition on cobalt deposition onto stainless steel in oxygenated high temperature water [J]. J. Nucl. Sci. Technol., 2003, 40: 143
|
62 |
Ohashi T, Ito T, Hosokawa H, et al. Investigation of cobalt buildup behavior and suppression by zinc injection on stainless steel under HWC conditions using simultaneous continuous measurements of corrosion and cobalt buildup [J]. J. Nucl. Sci. Technol., 2015, 52: 588
|
63 |
Fuse M, Nagase M, Usui N, et al. Cobalt radioactivity behaviors in a BWR environment and countermeasures for dose rate reduction [J]. Nucl. Sci. Eng., 2015, 181: 175
|
64 |
Angeliu T M, Andresen P L. Effect of zinc additions on oxide rupture strain and repassivation kinetics of iron-based alloys in 288oC water [J]. Corrosion, 1996, 52: 28
doi: 10.5006/1.3292092
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|