Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 529-539     CSTR: 32134.14.1005.4537.2023.180      DOI: 10.11902/1005.4537.2023.180
  综合评述 本期目录 | 过刊浏览 |
压水堆核电厂热态功能试验水化学与设备材料腐蚀关系的研究进展
彭立园1,2, 吴欣强1(), 张兹瑜1, 谭季波1
1.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
2.中国科学技术大学材料科学与工程学院 合肥 230026
Review on Relationship Between Hot Functional Test Water Chemistry and Corrosion Behavior of Related Component Materials in Pressurized Water Reactor Nuclear Power Plants
PENG Liyuan1,2, WU Xinqiang1(), ZHANG Ziyu1, TAN Jibo1
1. CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
引用本文:

彭立园, 吴欣强, 张兹瑜, 谭季波. 压水堆核电厂热态功能试验水化学与设备材料腐蚀关系的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 529-539.
Liyuan PENG, Xinqiang WU, Ziyu ZHANG, Jibo TAN. Review on Relationship Between Hot Functional Test Water Chemistry and Corrosion Behavior of Related Component Materials in Pressurized Water Reactor Nuclear Power Plants[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 529-539.

全文: PDF(1872 KB)   HTML
摘要: 

热态功能试验(HFT)是新建核电厂装载燃料前的试运行阶段,目的是验证压水堆(PWR)核电厂在冷态、正常运行和停堆的整个温度和压力范围内相关设备和系统的功能响应,以确保其能按设计要求正常运行。HFT水化学可以在PWR一回路关键设备表面形成一层稳定、具有保护性的预氧化膜,有效降低设备材料在后续长期正常运行过程中的腐蚀速率、金属离子的释放速率及放射性核素在腐蚀产物膜中的掺杂,进而缓解核电厂的腐蚀,降低停堆辐射剂量率。本文综述了目前PWR核电厂应用的HFT水化学与优化HFT水化学参数的研究评价方法,分析了H3BO3、LiOH、pHT、溶解氢及注Zn等HFT水化学因素对关键设备材料腐蚀行为的影响,指出了目前HFT水化学研究中的不足和进一步的研究方向。

关键词 PWR核电厂热态功能试验水化学辐射剂量率腐蚀速率    
Abstract

Hot functional test (HFT) involves a number of pre-operational exercises without fuel performed to confirm the operability of newly constructed nuclear power plants in the conditions expected during both normal and off-normal operations of a pressurized water reactor (PWR). HFT water chemistry provides an opportunity to produce a stable and protective oxide scale on the key equipment in the primary coolant of PWR which can greatly reduce the corrosion rate of the substrate, the release of the metal ions and the incorporation of activated corrosion products during the subsequently long-term normal operations, and furthermore, relief the dose rate and decrease the corrosion rates of the related component materials for the nuclear power plants. HFT water chemistry adopted in PWR nuclear power plants and the evaluation methods for the HFT water chemistry optimization are reviewed in the present work. The effect of boric acid, lithium hydroxide, pHT, dissolved hydrogen and Zn injection on the corrosion behavior of key components materials are analyzed. Challenges and trends for HFT water chemistry optimization in the future are also addressed.

Key wordsPWR nuclear power plants    hot functional test    water chemistry    dose rate    corrosion rate
收稿日期: 2023-05-29      32134.14.1005.4537.2023.180
ZTFLH:  TG174  
基金资助:国家自然科学基金(52171085)
通讯作者: 吴欣强,E-mail:xqwu@imr.ac.cn,研究方向为核电结构材料服役损伤行为与评价技术
Corresponding author: WU Xinqiang, E-mail: xqwu@imr.ac.cn
作者简介: 彭立园,女,1990年生,博士生
图1  分步HFT工艺各阶段水化学参数[8]
图2  Tomari 3号机组和对照机组中的HFT水化学参数(未显示Tomari 3号机组中的Zn浓度)[16]
ParameterAP1000 PlantTraditional
Chloride, fluoride, sulfate / µg·L-1≤ 150 (each)≤ 150 (each)
Chemical additionsDuring Heatup PlateauPrior to Heatup
Oxygen / µg·L-1≤ 100≤ 100
Time at NOT/NOP / d1926
Average pH at 292℃7.37.2
Average lithium / mg·L-10.630.51
Average hydrogen / mL·kg-136-
Average zinc / µg·L-146-
Zinc exposure / µg·L-1-months51-
Average boron during cooldown / mg·L-1790-
pHT after cooldown5.0-
Oxygen following H2O2 addition / mg·L-1> 1-
表1  典型HFT和注Zn分步HFT水化学参数对比[19]
图3  304H不锈钢和690合金经AP1000核电机组的HFT水化学(注Zn的分步HFT水化学)预氧化处理后表面预成膜的XPS深度分布图[19]
图4  Ni/NiO转变线随DH浓度和温度的变化关系[36,37]
1 Garbett K, Mantell M A. Corrosion product behaviour during hot functional tests and normal operation in cycle 1 at Sizewell B [A]. Water Chemistry of Nuclear Reactor Systems 7, Vol.2 [C]. Bournemouth: British Nuclear Energy Society, 1996: 443
2 Kadoya M. Countermeasures for radiation dose reduction at Ikata unit No.3 [A]. Proceedings of the International Congress of the International Radiation Protection Association [C]. Tokyo, Japan: Japan Health Physics Society, 2000
3 Ito A, Murata K, Yokoyama J. Water chemistry during startup testing at the latest PWR: Genkai unit No.4 [A]. Proceedings of the JAIF International Conference on Water Chemistry in Nuclear Power Plants [C]. Tokyo, Japan: Japan Atomic Industrial Forum, Inc., 1998: 806
4 Nishizawa E. Primary water chemistry improvement for radiation exposure reduction at Japanese PWR plants [C]. Washington, DC: U.S. Nuclear Regulatory Commission, 1995
5 Cubitt M, Garbett K, Lancaster G, et al. Shutdown corrosion product, radiation field and personnel dose development at the Sizewell B PWR [A]. Proceedings of the Xth International Conference on Water Chemistry of Nuclear Reactor Systems [C]. 2004, San Francisco
6 Bates J, Lancaster G, Scrancher M, et al. Corrosion product monitoring during the seventh refuelling outage at Sizewell B [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems [C]. Jeju Island, South Korea, 2006
7 Bates C, Garbett K, Hinds K, et al. Development of corrosion product behaviour and radiation fields at the Sizewell B PWR from 1995 to 2008 [J]. VGB PowerTech, 2008, 88: 52
8 Engler N, Brun C, Guillodo M. Optimization of SG tubes prefilming process to reduce nickel release [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems [C]. Berlin, 2008: 251
9 Matsuura M, Tsukamoto M, Nishiura H, et al. Application of zinc injection to reduce radiation sources at Takahama unit 4 [A]. Proceedings of the Symposium on Water Chemistry and Corrosion in Nuclear Power Plants in Asia [C]. Tokyo, Japan: Atomic Energy Society of Japan, Division of Water Chemistry, 2009: 309
10 Betova I, Bojinov M, Kinnunen P, et al. Influence of Zn on the oxide layer on AISI 316L(NG) stainless steel in simulated pressurised water reactor coolant [J]. Electrochim. Acta, 2009, 54: 1056
doi: 10.1016/j.electacta.2008.08.040
11 Huang J B, Liu X H, Han E-H, et al. Influence of Zn on oxide films on Alloy 690 in borated and lithiated high temperature water [J]. Corros. Sci., 2011, 53: 3254
doi: 10.1016/j.corsci.2011.06.001
12 Liu X H, Wu X Q, Han E-H. Influence of Zn injection on characteristics of oxide film on 304 stainless steel in borated and lithiated high temperature water [J]. Corros. Sci., 2011, 53: 3337
doi: 10.1016/j.corsci.2011.06.011
13 Liu X H, Wu X Q, Han E-H. Electrochemical and surface analytical investigation of the effects of Zn concentrations on characteristics of oxide films on 304 stainless steel in borated and lithiated high temperature water [J]. Electrochim. Acta, 2013, 108: 554
doi: 10.1016/j.electacta.2013.06.131
14 Zhang S H, Shi R X, Tan Y. Comparison of the solubility of ZnFe2O4, Fe3O4 and Fe2O3 in high temperature water [J]. J. Solution Chem., 2018, 47: 1112
doi: 10.1007/s10953-018-0779-z
15 Hayakawa H, Mino Y, Yamada K, et al. Zinc injection during hot functional test (HFT) in Tomari unit 3 [A]. Proceedings of the Symposium on Water Chemistry and Corrosion in Nuclear Power Plants in Asia [C]. Nagoya, Aichi, Japan, 2009: 206
16 Hitoshi H, Mino Y, Nakahama S, et al. Zinc injection during hot functional test (HFT) in Tomari unit 3 [C]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems. Quebec, Canada, 2010
17 Hayakawa H, Mino Y, Nakahama S, et al. Effects of zinc injection from hot functional test at Tomari unit 3 [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems [C]. Paris, France, 2012
18 Jiang L, Meng X B, Wu X D. First application of advanced technical for chemistry control during HFT for AP1000 [A]. Proceedings of the Chinese Nuclear Society [C]. Yantai, 2021
18 姜 磊, 孟宪波, 吴旭东. AP1000机组热态功能试验化学控制新技术的首次应用 [A]. 中国核学会2021年学术年会 [C]. 烟台, 2021
19 DeVito R L, Buckley D J, Byers W A, et al. Westinghouse experience with AP1000 plant hot functional testing chemistry [A]. Proceedings of the International Conference on Water Chemistry of Nuclear Reactor Systems [C]. San Francisco, United States, 2018
20 Tawaki S, Koyasu T, Katayama Y, et al. Improvement of shutdown chemistry for outer oxide layer removal [A]. Proceedings of the JAIF International Conference on Water Chemistry in Nuclear Power Plants [C]. Japan, 1991
21 Zhang Z M, Wang J Q, Han E-H, et al. Analysis of surface oxide films formed in hydrogenated primary water on Alloy 690TT samples with different surface states [J]. J. Mater. Sci. Technol., 2014, 30: 1181
doi: 10.1016/j.jmst.2014.09.002
22 Zhang Z M, Wang J Q, Han E-H, et al. Influence of dissolved oxygen on oxide films of Alloy 690TT with different surface status in simulated primary water [J]. Corros. Sci., 2011, 53: 3623
doi: 10.1016/j.corsci.2011.07.012
23 Zhang L F, Chen K, Wang J M, et al. Effects of zinc injection on stress corrosion cracking of cold worked austenitic stainless steel in high-temperature water environments [J]. Scr. Mater., 2017, 140: 50
doi: 10.1016/j.scriptamat.2017.05.032
24 Betova I, Bojinov M, Karastoyanov V, et al. Effect of water chemistry on the oxide film on Alloy 690 during simulated hot functional testing of a pressurised water reactor [J]. Corros. Sci., 2012, 58: 20
doi: 10.1016/j.corsci.2012.01.002
25 Peng L Y, Zhang Z Y, Tan J B, et al. Effects of boric acid and lithium hydroxide on the corrosion behaviors of 316LN stainless steel in simulating hot functional test high-temperature pressurized water [J]. Corros. Sci., 2022, 198: 110157
doi: 10.1016/j.corsci.2022.110157
26 Betova I, Bojinov M, Karastoyanov V, et al. Optimisation of the water chemistry during hot functional test of a PWR for improved stability of the passive film on Alloy 690 [A]. Proceedings of the Nuclear Plant Chemistry Conference (NPC) [C]. Paris, France, 2012
27 Sun H, Wu X Q, Han E-H, et al. Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304 SS in borated and lithiated high temperature water [J]. Corros. Sci., 2012, 59: 334
doi: 10.1016/j.corsci.2012.03.022
28 Liu X H, Han E-H, Wu X Q. Effects of pH value on characteristics of oxide films on 316L stainless steel in Zn-injected borated and lithiated high temperature water [J]. Corros. Sci., 2014, 78: 200
doi: 10.1016/j.corsci.2013.09.017
29 Wang J Z, Wang J Q, Ming H L, et al. Effect of pH on corrosion behavior of 316L stainless steel in hydrogenated high temperature water [J]. Mater. Corros., 2018, 69: 580
30 Bojinov M, Kinnunen P, Lundgren K, et al. A mixed-conduction model for the oxidation of stainless steel in a high-temperature electrolyte: estimation of kinetic parameters of oxide layer growth and restructuring [J]. J. Electrochem. Soc., 2005, 152: B250
doi: 10.1149/1.1931447
31 Robertson J. The mechanism of high temperature aqueous corrosion of steel [J]. Corros. Sci., 1989, 29: 1275
doi: 10.1016/0010-938X(89)90120-0
32 Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels [J]. Corros. Sci., 1991, 32: 443
doi: 10.1016/0010-938X(91)90125-9
33 Montemor M F, Ferreira M G S, Walls M, et al. Influence of pH on properties of oxide films formed on type 316L stainless steel, Alloy 600, and Alloy 690 in high-temperature aqueous environments [J]. Corrosion, 2003, 59: 11
doi: 10.5006/1.3277531
34 Liao J P, Mao Y L, Jin D S, et al. Laboratory simulation of crud deposition on Zr-alloy fuel cladding in simulated pressurized water reactor primary coolant [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 197
34 廖家鹏, 毛玉龙, 金德升 等. 锆合金包壳在模拟压水堆一回路冷却剂中的表面污垢沉积行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 197
doi: 10.11902/1005.4537.2022.022
35 Lim D S, Jeon S H, Bae B J, et al. Effect of zinc addition scenarios on general corrosion of Alloy 690 in borated and lithiated water at 330oC [J]. Corros. Sci., 2021, 189: 109627
doi: 10.1016/j.corsci.2021.109627
36 Attanasio S A, Morton D S. Measurement of the nickel/nickel oxide transition in Ni-Cr-Fe alloys and updated data and correlations to quantify the effect of aqueous hydrogen on primary water SCC[R]. Schenectady, NY: Lockheed Martin Corporation, 2003
37 Andresen P L, Hickling J, Ahluwalia A, et al. Effects of hydrogen on stress corrosion crack growth rate of nickel alloys in high-temperature water [J]. Corrosion, 2008, 64: 707
doi: 10.5006/1.3278508
38 Bai J X, Bosch R W, Ritter S, et al. Electrochemical and spectroscopic characterization of oxide films formed on Alloy 182 in simulated boiling water reactor environment: effect of dissolved hydrogen [J]. Corros. Sci., 2018, 133: 204
doi: 10.1016/j.corsci.2018.01.024
39 Nakagawa T, Totsuka N, Terachi T, et al. Influence of dissolved hydrogen on oxide film and PWSCC of Alloy 600 in PWR primary water [J]. J. Nucl. Sci. Technol., 2003, 40: 39
doi: 10.1080/18811248.2003.9715330
40 Jeon S H, Lee E H, Hur D H. Effects of dissolved hydrogen on general corrosion behavior and oxide films of alloy 690TT in PWR primary water [J]. J. Nucl. Mater., 2017, 485: 113
doi: 10.1016/j.jnucmat.2016.12.020
41 Lee H B, Chen J J, Meng S, et al. Characterization of oxide layers formed on type 316 stainless steel exposed to the simulated PWR primary water environment with varying dissolved hydrogen and zinc concentrations [J]. J. Nucl. Mater., 2021, 556: 153193
doi: 10.1016/j.jnucmat.2021.153193
42 Qiu Y B, Shoji T, Lu Z P. Effect of dissolved hydrogen on the electrochemical behaviour of Alloy 600 in simulated PWR primary water at 290oC [J]. Corros. Sci., 2011, 53: 1983
doi: 10.1016/j.corsci.2011.02.020
43 De Araújo Figueiredo C, Bosch R W, Vankeerberghen M. Electrochemical investigation of oxide films formed on nickel alloys 182, 600 and 52 in high temperature water [J]. Electrochim. Acta, 2011, 56: 7871
doi: 10.1016/j.electacta.2011.05.077
44 Xu J, Shoji T, Jang C. The effects of dissolved hydrogen on the corrosion behavior of Alloy 182 in simulated primary water [J]. Corros. Sci., 2015, 97: 115
doi: 10.1016/j.corsci.2015.04.021
45 Nong J, Guo Q, Xu J, et al. Effects of alternating dissolved oxygen and dissolved hydrogen on the corrosion behavior of alloy 52 in high temperature high pressure water [J]. J. Nucl. Mater., 2020, 540: 152396
doi: 10.1016/j.jnucmat.2020.152396
46 Peng Q J, Hou J, Sakaguchi K, et al. Effect of dissolved hydrogen on corrosion of Inconel Alloy 600 in high temperature hydrogenated water [J]. Electrochim. Acta, 2011, 56: 8375
doi: 10.1016/j.electacta.2011.07.032
47 Dong L J, Peng Q J, Zhang Z M, et al. Effect of dissolved hydrogen on corrosion of 316NG stainless steel in high temperature water [J]. Nucl. Eng. Des., 2015, 295: 403
doi: 10.1016/j.nucengdes.2015.08.030
48 Dan T C, Lü Z P, Wang J Q, et al. Crack growth behavior for stress corrosion cracking of 690 alloy in high temperature water [J]. Acta Metall. Sin., 2010, 46: 1267
doi: 10.3724/SP.J.1037.2010.01267
48 但体纯, 吕战鹏, 王俭秋 等. 690合金在高温水中的应力腐蚀裂纹扩展行为 [J]. 金属学报, 2010, 46: 1267
doi: 10.3724/SP.J.1037.2010.00199
49 Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
49 刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513
doi: 10.11902/1005.4537.2021.130
50 Bai J X, Ritter S, Seifert H P, et al. Using tapered specimens to study the effect of hydrogen and surface finish on SCC initiation in Alloy 182 under boiling water reactor conditions [J]. Corros. Eng. Sci. Technol., 2017, 52: 558
doi: 10.1080/1478422X.2017.1340245
51 Terachi T, Totsuka N, Yamada T, et al. Influence of dissolved hydrogen on structure of oxide film on Alloy 600 formed in primary water of pressurized water reactors [J]. J. Nucl. Sci. Technol., 2003, 40: 509
doi: 10.1080/18811248.2003.9715385
52 Zhong X Y, Bali S C, Shoji T. Effects of dissolved hydrogen and surface condition on the intergranular stress corrosion cracking initiation and short crack growth behavior of non-sensitized 316 stainless steel in simulated PWR primary water [J]. Corros. Sci., 2017, 118: 143
doi: 10.1016/j.corsci.2017.02.003
53 Bai J X, Ritter S, Seifert H P, et al. Stress corrosion cracking initiation and short crack growth behaviour in Alloy 182 weld metal under simulated boiling water reactor hydrogen water chemistry conditions [J]. Corros. Sci., 2018, 131: 208
doi: 10.1016/j.corsci.2017.11.021
54 Rebak R B, Szklarska-Smialowska Z. Effect of partial pressure of hydrogen on IGSCC of Alloy 600 in PWR primary water [J]. Corrosion, 1991, 47: 754
doi: 10.5006/1.3585185
55 Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
55 焦 洋, 张胜寒, 檀 玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417
56 Tigeras A, Stellwag B, Engler N, et al. Understanding the zinc behaviour in PWR primary coolant: a comparison between French and German experience [J]. VGB PowerTech, 2008, 88: 61
57 Arjmand F, Wang J M, Zhang L F. Zinc addition and its effect on the corrosion behavior of a 30% cold forged Alloy 690 in simulated primary coolant of pressurized water reactors [J]. J. Alloy. Compd., 2019, 791: 1176
doi: 10.1016/j.jallcom.2019.03.362
58 Holdsworth S, Scenini F, Burke M G, et al. The effect of high-temperature water chemistry and dissolved zinc on the cobalt incorporation on type 316 stainless steel oxide [J]. Corros. Sci., 2018, 140: 241
doi: 10.1016/j.corsci.2018.05.041
59 Chajduk E, Bojanowska-Czajka A. Corrosion mitigation in coolant systems in nuclear power plants [J]. Prog. Nucl. Energ., 2016, 88: 1
doi: 10.1016/j.pnucene.2015.11.011
60 Hosokawa H, Nagase M. Investigation of cobalt deposition behavior with zinc injection on stainless steel under BWR conditions [J]. J. Nucl. Sci. Technol., 2004, 41: 682
doi: 10.1080/18811248.2004.9715533
61 Inagaki H, Nishikawa A, Sugita Y, et al. Synergy effect of simultaneous zinc and nickel addition on cobalt deposition onto stainless steel in oxygenated high temperature water [J]. J. Nucl. Sci. Technol., 2003, 40: 143
62 Ohashi T, Ito T, Hosokawa H, et al. Investigation of cobalt buildup behavior and suppression by zinc injection on stainless steel under HWC conditions using simultaneous continuous measurements of corrosion and cobalt buildup [J]. J. Nucl. Sci. Technol., 2015, 52: 588
63 Fuse M, Nagase M, Usui N, et al. Cobalt radioactivity behaviors in a BWR environment and countermeasures for dose rate reduction [J]. Nucl. Sci. Eng., 2015, 181: 175
64 Angeliu T M, Andresen P L. Effect of zinc additions on oxide rupture strain and repassivation kinetics of iron-based alloys in 288oC water [J]. Corrosion, 1996, 52: 28
doi: 10.5006/1.3292092
[1] 麻衡, 田会云, 刘宇茜, 王月香, 何康, 崔中雨, 崔洪芝. S420海工钢在不同海洋区带环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[2] 冯兴国, 顾卓然, 范琦琦, 卢向雨, 杨雅师. 改性珊瑚混凝土中2205不锈钢钢筋的耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.
[3] 冀跃飞, 郝龙, 王俭秋, 李庆华, 郑跃, 于沛, 柯伟. 压水堆二回路碱化剂与材料的相容性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 267-277.
[4] 常雪婷, 宋嘉琪, 王冰, 王东胜, 陈文聪, 王海丰. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[5] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[6] 杨湘愚, 关蕾, 李雨, 张永康, 王冠, 闫德俊. 基于正交试验的90°弯管冲刷腐蚀数值模拟及实验研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[7] 梅佳雪, 杜尊峰, 朱海涛. 基于随机腐蚀的船舶结构极限承载力研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 662-668.
[8] 王淇萱, 吕文生, 杨鹏, 诸利一, 廖文景, 朱远乐. 尾矿库埋入式传感器不锈钢外壳腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[9] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[10] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[11] 赵国仙,黄静,薛艳. 某油田地面集输管道用材腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[12] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[13] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[14] 李洋, 李承媛, 陈旭, 杨佳星, 王欣彤, 明男希, 韩镇泽. 超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[15] 宋丰轩,赵启忠,李飞龙,任月路,黄奎,张新明. 不同时效态7050铝合金板材腐蚀速率测量[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.