Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 585-600     CSTR: 32134.14.1005.4537.2023.242      DOI: 10.11902/1005.4537.2023.242
  研究报告 本期目录 | 过刊浏览 |
单相流冲刷条件下一种低合金高强钢的腐蚀行为研究
傅江悦1,2, 郭建喜3, 杨延格2(), 冷哲1(), 王文4
1.浙江海洋大学海洋工程装备学院 舟山 316022
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3.海军勤务学院 天津 300450
4.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution
FU Jiangyue1,2, GUO Jianxi3, YANG Yange2(), LENG Zhe1(), WANG Wen4
1. School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan 316022, China
2. Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. Naval Logistics Academy, Tianjin 300450, China
4. Shengyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

傅江悦, 郭建喜, 杨延格, 冷哲, 王文. 单相流冲刷条件下一种低合金高强钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
Jiangyue FU, Jianxi GUO, Yange YANG, Zhe LENG, Wen WANG. Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 585-600.

全文: PDF(32156 KB)   HTML
摘要: 

通过腐蚀失重、电化学阻抗谱、动电位极化曲线等测试方法,结合腐蚀形貌宏观/微观表征及Raman光谱等手段,系统研究了一种新研制低合金高强钢在单相流冲刷条件下的腐蚀行为。结果表明,低合金高强钢在单相流冲刷条件下的腐蚀失重是静态浸泡条件下的10倍以上;静态浸泡和动态冲刷条件下,低合金高强钢的腐蚀失效均可分为3个不同的阶段,在静态浸泡条件下的性能恶化主要体现在第2和第3阶段,而在动态冲刷条件下耐蚀性能会在第一阶段迅速降低。单向流冲刷阻碍了稳定性腐蚀产物α-FeOOH的生成,从而加速O2、Cl-等的传质以及破坏钝化膜和腐蚀产物膜完整性,最终导致加速腐蚀。

关键词 低合金高强钢冲刷腐蚀单相流电化学阻抗谱动电位极化    
Abstract

Erosion corrosion behavior of a newly developed high strength low alloy (HSLA) steel in flowing 3.5%NaCl solution was systematically investigated via a home-made rotating erosion device, mass loss measurement, electrochemical impedance spectroscopy and potentiodynamic polarization curve measurement, as well as macroscopic/microscopic characterization of corrosion morphology and Raman spectroscopy. The results revealed that the mass loss of the HSLA steel in flowing 3.5%NaCl solution exceeded that in static immersion test by over 10 times. Failure of the HSLA steel in both static immersion and dynamic erosion conditions exhibited three distinct stages. Degradation of the HSLA steel in static immersion conditions primarily manifested in the second and third stages. In contrast, the corrosion resistance of the HSLA steel in dynamic erosion conditions rapidly declined in the first stage. Flow erosion may hinder the formation of a stable corrosion product scale of α-FeOOH. The relevant accelerating corrosion mechanism may primarily be ascribed to the following two aspects: accelerating the mass transfer of O2, Cl- and other species, and compromising the passivation film as well as the integrity of the corrosion product film.

Key wordshigh strength low alloy steel    erosion corrosion    single phase flow    electrochemical impedance spectroscopy (EIS)    potentiodynamic polarization
收稿日期: 2023-08-07      32134.14.1005.4537.2023.242
ZTFLH:  TG171  
基金资助:国家自然科学基金(51401217)
通讯作者: 杨延格,E-mail:ygyang@imr.ac.cn,研究方向为金属材料的海洋腐蚀与防护;
冷哲,E-mail:lengzhe@zjou.edu.cn,研究方向为超轻合金
Corresponding author: YANG Yange, E-mail: ygyang@imr.ac.cn;
LENG Zhe, E-mail: lengzhe@zjou.edu.cn
作者简介: 傅江悦,男,1996年生,硕士生
图1  HSLA钢的光学显微组织形貌
图2  旋转式冲刷装置
图3  HSLA钢在静态浸泡和动态冲刷过程中的失重及腐蚀速率
图4  纯腐蚀与流动性介质的加速作用所导致的质量损失占比
图5  HSLA钢在静态浸泡及动态冲刷后的低频阻抗模值变化趋势
图6  HSLA钢在静态浸泡过程中的EIS结果
图7  HSLA钢在动态冲刷过程中的EIS结果
图8  电化学阻抗谱等效电路
图9  HSLA钢腐蚀产物膜电阻和电荷转移电阻随时间的变化
图10  HSLA钢静态浸泡不同时间后的动电位极化曲线
图11  HSLA钢动态冲刷不同时间后的动电位极化曲线
StateTime / hEcorr / VIcorr / A·cm-2Eb / VIp / A·cm-2
Static immersion0-0.4832.88 × 10-6-0.3411.51 × 10-5
2-0.5673.28 × 10-6-0.3384.50 × 10-5
12-0.4932.02 × 10-6
72-0.5394.68 × 10-6-0.3986.50 × 10-5
216-0.6618.34 × 10-6-0.3941.31 × 10-4
288-0.6349.42 × 10-6-0.3831.47 × 10-4
480-0.5864.55 × 10-6-0.3776.50 × 10-5
Dynamic flushing0-0.4793.05 × 10-6-0.3411.51 × 10-5
2-0.5994.02 × 10-6-0.4024.90 × 10-5
12-0.6165.68 × 10-6-0.3511.16 × 10-4
72-0.6741.84 × 10-5
216-0.6023.42 × 10-5
288-0.5603.90 × 10-5
480-0.5198.06 × 10-5
表1  静态浸泡和动态冲刷后的动电位极化曲线拟合参数
图12  HSLA钢在静态浸泡不同时间后的宏观形貌
图13  HSLA钢在动态冲刷不同时间后的宏观形貌
图14  HSLA钢显微组织的SEM像
图15  HSLA钢在静态浸泡不同时间后的微观形貌
图16  HSLA钢在动态冲刷不同时间后的微观形貌
图17  HSLA钢在静态浸泡和动态冲刷不同时间后腐蚀产物Raman光谱分析
PhaseRaman shift / cm-1
Lepidocrocite (γ-FeOOH)166, 217, (248-257), 310, 350, (376-393), (478-530), (526-530), (650-655), 713, (1300-1310)
Goethite (α-FeOOH)203, (241-250), (298-307), (385-399), (414-415), (474-483), (549-554), 684, 1002, 1113, 1304
Akaganeite (β-FeOOH)139, (308-314), 331, (385-390), (415-420), (497-499), (526-541), (720-745)
Magnetite (Fe3O4)(298-306), (535-550), 616, (663-670)
Maghemite (γ-Fe2O3)(339-386), (461-512), (500-506), (671-717), (700-720), (1400-1440)
Hematite (α-Fe2O3)(220-228), (238-250), (288-299), (400-415), (497-502), (609-625), 670, (1320-1330)
表2  文献中关于腐蚀产物的Raman位移[47~50]
图18  HSLA钢在静态浸泡过程中腐蚀机制
图19  HSLA钢在动态冲刷过程中的腐蚀机制
1 Rashid M S. High-strength, low-alloy steels [J]. Science, 1980, 208: 862
pmid: 17772810
2 Skobir D A. High-strength low-alloy (HSLA) steels: visokotrdna malolegirana (HSLA) konstrukcijska jekla [J]. Mater. Tehnol., 2011, 45: 295
3 Czyryca E J, Link R E, Wong R J, et al. Development and certification of HSLA-100 steel for naval ship construction [J]. Nav. Eng. J., 1990, 102: 63
4 Liu Z Y, Hao W K, Wu W, et al. Fundamental investigation of stress corrosion cracking of E690 steel in simulated marine thin electrolyte layer [J]. Corros. Sci., 2019, 148: 388
doi: 10.1016/j.corsci.2018.12.029
5 Zhang X W, Wu W J, Fu H, et al. The effect of corrosion evolution on the stress corrosion cracking behavior of mooring chain steel [J]. Corros. Sci., 2022, 203: 110316
doi: 10.1016/j.corsci.2022.110316
6 Xin Y T, Song K, Li Y, et al. Environmentally assisted stress corrosion cracking behaviour of low alloy steel in SO2-containing nacl solution [J]. J. Mater. Res. Technol., 2022, 19: 3255
doi: 10.1016/j.jmrt.2022.06.066
7 Zhao Y L, Ye F X, Zhang G, et al. Investigation of erosion-corrosion behavior of Q235B steel in liquid-solid flows [J]. Pet. Sci., 2022, 19: 2358
doi: 10.1016/j.petsci.2022.05.020
8 Rameshk M, Soltanieh M, Masoudpanah S M. Effects of flow velocity and impact angle on erosion-corrosion of an API-5 L X65 steel coated by plasma nitriding of hard chromium underlayer [J]. J. Mater. Res. Technol., 2020, 9: 10054
doi: 10.1016/j.jmrt.2020.07.013
9 Rajahram S S, Harvey T J, Wood R J K. Evaluation of a semi-empirical model in predicting erosion–corrosion [J]. Wear, 2009, 267: 1883
doi: 10.1016/j.wear.2009.03.002
10 Stack M M, Stott F H, Wood G C. Review of mechanisms of erosion-corrosion of alloys at elevated temperatures [J]. Wear, 1993, 162-164: 706
doi: 10.1016/0043-1648(93)90070-3
11 Karafyllias G, Galloway A, Humphries E. The effect of low pH in erosion-corrosion resistance of high chromium cast irons and stainless steels [J]. Wear, 2019, 420/421: 79
12 Wang X, Liu F, Li Y, et al. Corrosion behavior of B10 Cu-Ni alloy pipe in static and dynamic seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 119
12 王 晓, 刘 峰, 李 焰 等. 静态和动态海水中B10铜镍合金管的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 119
13 Li Q, Tang X, Li Y. Progress in research methods for erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 399
13 李 强, 唐 晓, 李 焰. 冲刷腐蚀研究方法进展 [J]. 中国腐蚀与防护学报, 2014, 34: 399
14 Zhu J, Zhang Q B, Chen Y, et al. Progress of study on erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 199
14 朱 娟, 张乔斌, 陈 宇 等. 冲刷腐蚀的研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 199
15 Melchers R E. Effect of temperature on the marine immersion corrosion of carbon steels [J]. Corrosion, 2002, 58: 768
doi: 10.5006/1.3277660
16 Kwok C T, Man H C, Leung L K. Effect of temperature, pH and sulphide on the cavitation erosion behaviour of super duplex stainless steel [J]. Wear, 1997, 211: 84
doi: 10.1016/S0043-1648(97)00072-0
17 Wu L, Ma A L, Zhang L M, et al. Intergranular erosion corrosion of pure copper tube in flowing NaCl solution [J]. Corros. Sci., 2022, 201: 110304
doi: 10.1016/j.corsci.2022.110304
18 Levy A V, Chik P. The effects of erodent composition and shape on the erosion of steel [J]. Wear, 1983, 89: 151
doi: 10.1016/0043-1648(83)90240-5
19 Liebhard M, Levy A. The effect of erodent particle characteristics on the erosion of metals [J]. Wear, 1991, 151: 381
doi: 10.1016/0043-1648(91)90263-T
20 Islam M A, Farhat Z N. Effect of impact angle and velocity on erosion of API X42 pipeline steel under high abrasive feed rate [J]. Wear, 2014, 311: 180
doi: 10.1016/j.wear.2014.01.005
21 Lin N, Arabnejad H, Shirazi S A, et al. Experimental study of particle size, shape and particle flow rate on erosion of stainless steel [J]. Powder Technol., 2018, 336: 70
doi: 10.1016/j.powtec.2018.05.039
22 Arabnejad H, Uddin H, Panda K, et al. Testing and modeling of particle size effect on erosion of steel and cobalt-based alloys [J]. Powder Technol., 2021, 394: 1186
doi: 10.1016/j.powtec.2021.09.057
23 Nguyen Q B, Nguyen D N, Murray R, et al. The role of abrasive particle size on erosion characteristics of stainless steel [J]. Eng. Fail. Anal., 2019, 97: 844
doi: 10.1016/j.engfailanal.2019.01.020
24 Nguyen V B, Nguyen Q B, Zhang Y W, et al. Effect of particle size on erosion characteristics [J]. Wear, 2016, 348-349: 126
doi: 10.1016/j.wear.2015.12.003
25 Okonkwo P C, Grami S, Murugan S, et al. Effect of erosion on corrosion of API X120 steel in relation to erodent particle size [J]. J. Iron Steel Res. Int., 2020, 27: 691
doi: 10.1007/s42243-019-00338-3
26 Anand K, Hovis S K, Conrad H, et al. Flux effects in solid particle erosion [J]. Wear, 1987, 118: 243
doi: 10.1016/0043-1648(87)90146-3
27 Ren Y, Zhao H J, Zhou H, et al. Effect of sand size and temperature on synergistic effect of erosion-corrosion for 20 steel in simulated oilfield produced fluid with sand [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 508
27 任 莹, 赵会军, 周 昊 等. 粒径和温度对20号钢冲刷腐蚀协同作用的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 508
28 Suchánek J, Kuklík V, Zdravecká E. Influence of microstructure on erosion resistance of steels [J]. Wear, 2009, 267: 2092
doi: 10.1016/j.wear.2009.08.004
29 Levy A V. The solid particle erosion behavior of steel as a function of microstructure [J]. Wear, 1981, 68: 269
doi: 10.1016/0043-1648(81)90177-0
30 Shadley J R, Shirazi S A, Dayalan E, et al. Prediction of erosion-corrosion penetration rate in a carbon dioxide environment with sand [J]. Corrosion, 1998, 54: 972
doi: 10.5006/1.3284819
31 Xu Y Z, Zhang Q L, Zhou Q P, et al. Flow accelerated corrosion and erosion-corrosion behavior of marine carbon steel in natural seawater [J]. npj Mater. Degrad., 2021, 5: 56
doi: 10.1038/s41529-021-00205-1
32 Neville A, Hodgkiess T, Dallas J T. A study of the erosion-corrosion behaviour of engineering steels for marine pumping applications [J]. Wear, 1995, 186-187: 497
doi: 10.1016/0043-1648(95)07145-8
33 Neville A, Reyes M, Xu H. Examining corrosion effects and corrosion/erosion interactions on metallic materials in aqueous slurries [J]. Tribol. Int., 2002, 35: 643
doi: 10.1016/S0301-679X(02)00055-5
34 Zhou S, Stack M M, Newman R C. Characterization of synergistic effects between erosion and corrosion in an aqueous environment using electrochemical techniques [J]. Corrosion, 1996, 52: 934
doi: 10.5006/1.3292087
35 Malka R, Nešić S, Gulino D A. Erosion-corrosion and synergistic effects in disturbed liquid-particle flow [J]. Wear, 2007, 262: 791
doi: 10.1016/j.wear.2006.08.029
36 Rajahram S S, Harvey T J, Wood R J K. Erosion–corrosion resistance of engineering materials in various test conditions [J]. Wear, 2009, 267: 244
doi: 10.1016/j.wear.2009.01.052
37 Lotz U, Heitz E. Flow-dependent corrosion. I. Current understanding of the mechanisms involved [J]. Mater. Corros., 1983, 34: 454
38 Bitter J G A. A study of erosion phenomena part I [J]. Wear, 1963, 6: 5
doi: 10.1016/0043-1648(63)90003-6
39 Levy A V. The platelet mechanism of erosion of ductile metals [J]. Wear, 1986, 108: 1
doi: 10.1016/0043-1648(86)90085-2
40 Zheng Y G, Yu H, Jiang S L, et al. Effect of the sea mud on erosion-corrosion behaviors of carbon steel and low alloy steel in 2.4% nacl solution [J]. Wear, 2008, 264: 1051
doi: 10.1016/j.wear.2007.08.008
41 Ige O O, Umoru L E. Effects of shear stress on the erosion-corrosion behaviour of X-65 carbon steel: a combined mass-loss and profilometry study [J]. Tribol. Int., 2016, 94: 155
doi: 10.1016/j.triboint.2015.07.040
42 Chung R J, Jiang J, Pang C, et al. Erosion-corrosion behaviour of high manganese steel used in slurry pipelines [J]. Wear, 2023, 530/531: 204885
43 Chung R J, Jiang J, Pang C, et al. Erosion-corrosion behaviour of steels used in slurry pipelines [J]. Wear, 2021, 477: 203771
doi: 10.1016/j.wear.2021.203771
44 Aguirre J, Walczak M, Rohwerder M. The mechanism of erosion-corrosion of API X65 steel under turbulent slurry flow: effect of nominal flow velocity and oxygen content [J]. Wear, 2019, 438/439: 203053
45 Peng W S, Cao X W. Analysis on erosion of pipe bends induced by liquid-solid two-phase flow [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 556
45 彭文山, 曹学文. 固体颗粒对液/固两相流弯管冲蚀作用分析 [J]. 中国腐蚀与防护学报, 2015, 35: 556
doi: 10.11902/1005.4537.2014.239
46 Hu Z W, Liu J G, Xing R, et al. Erosion-corrosion behavior of 90° horizontal elbow in single phase flow [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 115
46 胡宗武, 刘建国, 邢 蕊 等. 单相流条件下90°水平弯管冲刷腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 115
doi: 10.11902/1005.4537.2019.002
47 Morcillo M, Chico B, Alcántara J, et al. SEM/Micro-Raman characterization of the morphologies of marine atmospheric corrosion products formed on mild steel [J]. J. Electrochem. Soc., 2016, 163: C426
doi: 10.1149/2.0411608jes
48 Nauer G, Strecha P, Brinda-Konopik N, et al. Spectroscopic and thermoanalytical characterization of standard substances for the identification of reaction products on iron electrodes [J]. J. Therm. Anal., 1985, 30: 813
doi: 10.1007/BF01913309
49 Larroumet D, Greenfield D, Akid R, et al. Raman spectroscopic studies of the corrosion of model iron electrodes in sodium chloride solution [J]. J. Raman Spectrosc., 2007, 38: 1577
doi: 10.1002/jrs.v38:12
50 Demoulin A, Trigance C, Neff D, et al. The evolution of the corrosion of iron in hydraulic binders analysed from 46- and 260-year-old buildings [J]. Corros. Sci., 2010, 52: 3168
doi: 10.1016/j.corsci.2010.05.019
51 Dubois F, Mendibide C, Pagnier T, et al. Raman mapping of corrosion products formed onto spring steels during salt spray experiments. A correlation between the scale composition and the corrosion resistance [J]. Corros. Sci., 2008, 50: 3401
doi: 10.1016/j.corsci.2008.09.027
52 Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J]. Corros. Sci., 1974, 14: 279
doi: 10.1016/S0010-938X(74)80037-5
53 Zhang W H, Yang S W, Geng W T, et al. Corrosion behavior of the low alloy weathering steels in stagnant water [J]. Mater. Chem. Phys., 2023, 302: 127745
doi: 10.1016/j.matchemphys.2023.127745
[1] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[2] 李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[3] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[4] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[5] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[6] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[7] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[8] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[9] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[10] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[11] 杨新宇, 李祯, 段体岗, 黄国胜, 马力, 刘峰, 姜丹. 70Cu-30Ni合金管FeSO4预成膜及冲刷腐蚀行为分析[J]. 中国腐蚀与防护学报, 2023, 43(3): 561-568.
[12] 袁世成, 吴艳峰, 徐长慧, 王兴奇, 冷哲, 杨延格. 多羟基超分散剂对水性环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[13] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[14] 毛英畅, 祝钰, 孙圣凯, 秦真波, 夏大海, 胡文彬. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[15] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.