Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 453-461     CSTR: 32134.14.1005.4537.2023.077      DOI: 10.11902/1005.4537.2023.077
  研究报告 本期目录 | 过刊浏览 |
油溶性曼尼希碱缓蚀剂对紫铜在变压器油中的缓蚀行为研究
周文彬, 李梦冉, 周欣(), 孙海静, 孙杰
沈阳理工大学环境与化学工程学院 沈阳 110059
Oil Soluble Mannich Base Corrosion Inhibitor for Corrosion Inhibition of Copper in Transformer Oil
ZHOU Wenbin, LI Mengran, ZHOU Xin(), SUN Haijing, SUN Jie
School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110059, China
引用本文:

周文彬, 李梦冉, 周欣, 孙海静, 孙杰. 油溶性曼尼希碱缓蚀剂对紫铜在变压器油中的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 453-461.
Wenbin ZHOU, Mengran LI, Xin ZHOU, Haijing SUN, Jie SUN. Oil Soluble Mannich Base Corrosion Inhibitor for Corrosion Inhibition of Copper in Transformer Oil[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 453-461.

全文: PDF(6846 KB)   HTML
摘要: 

通过甲醛,十二胺和乙酰丙酮合成一种油溶性曼尼希碱类缓蚀剂(OMB),采用Fourier变换红外光谱(FT-IR)表征其结构。用盐雾实验分析OMB和石油磺酸钡(T701)以25#变压器油作为基础油配置防锈油后对紫铜的缓蚀性能,使用扫描电子显微镜(SEM)和原子力显微镜(AFM)进行腐蚀形貌观察,使用X射线光电子能谱(XPS)对表面进行成分分析,并结合量子化学计算和分子动力学模拟,以及Langmuir等温吸附方程式,进一步探讨了OMB对紫铜的缓蚀机理。结果表明:OMB是一种在盐雾环境下对紫铜具有优良缓蚀效果的缓蚀剂,其在紫铜表面的吸附行为为自发性吸附,符合混合吸附规律且以化学吸附为主,且平行吸附于Cu的表面。

关键词 曼尼希碱缓蚀行为量子化学分子动力学    
Abstract

An oil-soluble Mannich base corrosion inhibitor (OMB) was synthesized from formaldehyde, dodecylamine and acetone, and which then was characterized by Fourier transform infrared spectroscopy (FT-IR). The corrosion inhibition effect of OMB and barium petroleum sulfonate (T701) on copper in 25# transformer oil was comparatively assessed by means of salt spray test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). According to the quantum chemical calculation (Gaussian 09), molecular dynamics simulation (M-S) and Langmuir isothermal adsorption equation, the corrosion inhibition mechanism of OMB on copper was further discussed. The results show that OMB is a corrosion inhibitor with excellent corrosion inhibition effect on copper in salt spray test. The adsorption behavior of OMB on copper surface is spontaneous adsorption, which accords with mixed adsorption law and is mainly chemical adsorption, and the OMB moleculars are adsorbed parallel to the surface of copper.

Key wordsmannich bases    corrosion inhibition behavior    quantum chemistry    molecular dynamics
收稿日期: 2023-03-21      32134.14.1005.4537.2023.077
ZTFLH:  TG178  
基金资助:沈阳理工大学科研创新团队支持项目(SYLUXM202105);沈阳理工大学横向科研经费(2021071904);沈阳理工大学引进高层次人才科学研究项目(1010147000903)
通讯作者: 周欣,E-mail: zhouxin@alum.imr.ac.cn,研究方向为金属的腐蚀与防护
Corresponding author: ZHOU Xin, E-mail: zhouxin@alum.imr.ac.cn
作者简介: 周文彬,男,1999年生,硕士生
图1  OMB的合成流程
图2  OMB的FT-IR谱
图3  OMB和T701盐雾实验的缓蚀率
图4  吸附在Cu表面的OMB的缓蚀机理
图5  紫铜经7 d盐雾实验后的表面形貌
图6  紫铜经7 d盐雾实验后的AFM图
图7  含7% OMB紫铜7 d盐雾实验后的XPS谱
图8  含有OMB缓蚀剂的紫铜经1、3、5、7 d盐雾试验后的Langmuir等温吸附线
图9  OMB的吸附机理
图10  OMB的结构式、HOMO、LUMO和ESP
SpeciesEHOMOELUMOΔEPAIΔNχγσ
OMB-0.04966-0.238470.188810.049660.238479.299490.144070.0944110.5921
[C12H25SO3Ba]+-0.22156-0.355060.133500.221560.3550612.07250.288310.0667514.9812
表1  OMB和[C12H25SO3Ba]+的量子化学参数
图11  OMB在Cu(111)上平衡吸附形态的侧视图、俯视图及径向分布指数图
SpeciesT / K

Ebinding

eV

Einteract

eV

Cu-OMB-Oil3085.852-5.852
Cu-OMB3084.781-4.781
表2  OMB的结合能和相互作用能
1 El-Katori E E, Ahmed M, Nady H. Imidazole derivatives based on Glycourils as efficient anti-corrosion inhibitors for copper in HNO3 solution: Synthesis, electrochemical, surface, and theoretical approaches[J]. Colloid. Surf., 2022, 649A: 129391
2 Shen J J, Yang D, Ma L R, et al. Exploration of neonicotinoids as novel corrosion inhibitors for copper in a NaCl solution: Experimental and theoretical studies[J]. Colloid. Surf., 2022, 636A: 128058
3 Huang M, Wang L Z, Ma X Q, et al. Synergistic inhibition effect of walnut green husk extract and Nd(NO3)3 on aluminum in HCl solution[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 471
3 黄 苗, 王丽姿, 马晓青 等. 核桃青皮提取物与Nd(NO3)3对Al在HCl溶液中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2023, 43: 471
4 Zhou K, Liu X H, Liu X. Corrosion inhibition of navel orange peel extract to stainless steel in acidic medium[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 619
4 周 坤, 柳鑫华, 刘 帅. 在酸性介质中脐橙皮提取物对不锈钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43: 619
5 Li W H. Synthesis and Evaluation of New Corrosion Inhibitors[M]. Beijing: Science Press, 2015
5 李伟华. 新型缓蚀剂合成与评价[M]. 北京: 科学出版社, 2015
6 Mondal S, Aher R D, Bethi V, et al. Control of reactions of pyruvates by catalysts: direct enantioselective Mannich reactions of pyruvates catalyzed by amine-based catalyst systems[J]. Org. Lett., 2022, 24: 1853
doi: 10.1021/acs.orglett.2c00436
7 Gao Q Y, Zhu Q J, Zheng J F, et al. Positively charged membranes for dye/salt separation based on a crossover combination of Mannich reaction and prebiotic chemistry[J]. J. Hazardous Mater., 2022, 440: 129744
doi: 10.1016/j.jhazmat.2022.129744
8 Liu Z L, Shi Y C, Zhang X Y, et al. Discovery of novel 3-butyl-6-benzyloxyphthalide Mannich base derivatives as multifunctional agents against Alzheimer's disease[J]. Bioorg. Med. Chem., 2022, 58: 116660
doi: 10.1016/j.bmc.2022.116660
9 Wang G, Li W T, Wang X, et al. A Mannich-base imidazoline quaternary ammonium salt for corrosion inhibition of mild steel in HCl solution[J]. Mater. Chem. Phys., 2023, 293: 126956
doi: 10.1016/j.matchemphys.2022.126956
10 Ayeni A O, Akinyele O F, Hosten E C, et al. Synthesis, crystal structure, experimental and theoretical studies of corrosion inhibition of 2-((4-(2-hydroxy-4-methylbenzyl)piperazin-1-yl)methyl)-5-methylphenol-A Mannich base[J]. J. Mol. Struct., 2020, 1219: 128539
doi: 10.1016/j.molstruc.2020.128539
11 Singh A, Ansari K R, Quraishi M A, et al. Synthesis and investigation of Pyran derivatives as acidizing corrosion inhibitors for N80 steel in hydrochloric acid: Theoretical and experimental approaches[J]. J. Alloy. Compd., 2018, 762: 347
doi: 10.1016/j.jallcom.2018.05.236
12 Obot I B, Macdonald D D, Gasem Z M. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview[J]. Corros. Sci., 2015, 99: 1
doi: 10.1016/j.corsci.2015.01.037
13 Wu J G. Modern Fourier Transform Infrared Spectroscopy and Its Application[M]. Beijing: Science and Technology Academic Press, 1994
13 吴瑾光. 近代傅里叶变换红外光谱技术及应用[M]. 北京: 科学技术文献出版社, 1994
14 Solomon M M, Gerengi H, Umoren S A, et al. Gum Arabic-silver nanoparticles composite as a green anticorrosive formulation for steel corrosion in strong acid media[J]. Carbohydr. Polym., 2018, 181: 43
doi: 10.1016/j.carbpol.2017.10.051
15 Zhang Y, Tan B C, Zhang X, et al. Synthesized carbon dots with high N and S content as excellent corrosion inhibitors for copper in sulfuric acid solution[J]. J. Mol. Liq., 2021, 338: 116702
doi: 10.1016/j.molliq.2021.116702
16 Qiang Y J, Zhang S T, Yan S, et al. Three indazole derivatives as corrosion inhibitors of copper in a neutral chloride solution[J]. Corros. Sci., 2017, 126: 295
doi: 10.1016/j.corsci.2017.07.012
17 Satpati S, Suhasaria A, Ghosal S, et al. Amino acid and cinnamaldehyde conjugated schiff bases as proficient corrosion inhibitors for mild steel in 1 M HCl at higher temperature and prolonged exposure: detailed electrochemical, adsorption and theoretical study[J]. J. Mol. Liq., 2021, 324: 115077
doi: 10.1016/j.molliq.2020.115077
18 Zeng W J, Li W P, Tan B C, et al. A research combined theory with experiment of 2-amino-6-(Methylsulfonyl)Benzothiazole as an excellent corrosion inhibitor for copper in H2SO4 medium[J]. J. Taiwan Inst. Chem. Eng., 2021, 128: 417
doi: 10.1016/j.jtice.2021.08.032
19 Madkour L H, Kaya S, Kaya C, et al. Quantum chemical calculations, molecular dynamics simulation and experimental studies of using some azo dyes as corrosion inhibitors for iron. Part 1: Mono-azo dye derivatives[J]. J. Taiwan Inst. Chem. Eng., 2016, 68: 461
doi: 10.1016/j.jtice.2016.09.015
20 Zhang D Q, Tang Y M, Qi S J, et al. The inhibition performance of long-chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl[J]. Corros. Sci., 2016, 102: 517
doi: 10.1016/j.corsci.2015.10.002
21 Ma Y C, Fan B M, Wang M M, et al. Two-step preparation of trazodone and its corrosion inhibition mechanism for carbon steel[J]. Chem. J. Chin. Univ., 2019, 40: 1706
21 马玉聪, 樊保民, 王满曼 等. 曲唑酮的两步法制备及对碳钢的缓蚀机理[J]. 高等学校化学学报, 2019, 40: 1706
doi: 10.7503/cjcu20190017
22 Wang Y S, Zuo Y. The adsorption and inhibition behavior of two organic inhibitors for carbon steel in simulated concrete pore solution[J]. Corros. Sci., 2017, 118: 24
doi: 10.1016/j.corsci.2017.01.008
23 Tan B C, Zhang S T, Li W P, et al. Food spices 2,5-dihydroxy-1,4-dithiane as an eco-friendly corrosion inhibitor for X70 steel in 0.5 mol/L H2SO4 Solution[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 469
23 谭伯川, 张胜涛, 李文坡 等. 食用香料1,4-二硫-2,5-二醇环保型缓蚀剂对X70钢在0.5 mol/L H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41: 469
doi: 10.11902/1005.4537.2020.100
[1] 陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[2] 谭伯川, 张胜涛, 李文坡, 向斌, 强玉杰. 食用香料1,4-二硫-2,5-二醇环保型缓蚀剂对X70钢在0.5 mol/L H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 469-476.
[3] 王丽姿, 李向红. 三氯乙酸溶液中咪唑啉在钢表面的吸附及缓蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(3): 353-361.
[4] 孙伟松, 于思荣, 高嵩, 姚新宽, 徐海亮, 钱冰, 王冰姿. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[5] 孙丹, 李伟, 魏润芝, 王胜, 韩佳星, 刘峥. 基于量子化学的2-氨基芴双希夫碱缓蚀剂的理论评价[J]. 中国腐蚀与防护学报, 2021, 41(3): 405-410.
[6] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[8] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[9] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[10] 朱紫晶,魏莉莎,陈振宇,邱于兵,郭兴蓬. 薄层液膜下空间电场对碳酸环己胺缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 216-220.
[11] 赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[12] 赵景茂,赵雄,姜瑞景. 在动态H2S/CO2体系中疏水链上的双键对咪唑啉衍生物缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
[13] 苏铁军, 罗运柏, 李克华, 李凡修, 邓仕英, 习伟. 苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[14] 冯丽娟,赵康文,杨怀玉,唐囡,王福会,上官帖. 混凝土模拟液中咪唑啉衍生物与四乙烯五胺间缓蚀协同效应[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
[15] 谢斌, 朱莎莎, 李玉龙, 赖川, 林肖, 邹立科, 何林芯, 陈能. O,O '-二(2-苯乙基) 二硫代磷酸二乙铵在HCl溶液中对Q235钢的缓蚀性研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 366-374.