Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 413-421     CSTR: 32134.14.1005.4537.2023.145      DOI: 10.11902/1005.4537.2023.145
  研究报告 本期目录 | 过刊浏览 |
钢筋表面双功能磷酸氢钛改性的硅溶胶涂层研究
赵鹏1,2, 郝春艳1,2, 杨胜杰3, 于金山1,2, 武爽4, 于奔1,2, 张俊喜3()
1.国网天津市电力公司电力科学研究院 天津 300384
2.天津市电力物联网企业重点实验室 天津 300384
3.上海电力大学 电力材料防护与新材料上海市重点实验室 上海 200090
4.天津送变电工程有限公司 天津 300000
Silica Sol Coating Modified by Bifunctional Titanium Phosphate for Reinforce Bars
ZHAO Peng1,2, HAO Chunyan1,2, YANG Shengjie3, YU Jinshan1,2, WU Shuang4, YU Ben1,2, ZHANG Junxi3()
1.State Grid Tianjin Electric Power Research Institute, Tianjin 300384, China
2.Tianjin Key Laboratory of Internet of Things in Electricity, Tianjin 300384, China
3.Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
4.Tianjin Power Transmission and Transformation Engineering Company, Tianjin 300000, China
引用本文:

赵鹏, 郝春艳, 杨胜杰, 于金山, 武爽, 于奔, 张俊喜. 钢筋表面双功能磷酸氢钛改性的硅溶胶涂层研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 413-421.
Peng ZHAO, Chunyan HAO, Shengjie YANG, Jinshan YU, Shuang WU, Ben YU, Junxi ZHANG. Silica Sol Coating Modified by Bifunctional Titanium Phosphate for Reinforce Bars[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 413-421.

全文: PDF(7925 KB)   HTML
摘要: 

制备了一种用于钢筋表面的硅溶胶涂层,以水玻璃为前驱体,在涂层制备中引入α-磷酸氢钛(α-TiP)填料,采用XRD、FT-IR、SEM以及离子色谱仪等对α-TiP的结构形貌及离子交换能力进行了表征,并采用XRD、FT-IR、SEM、电化学测试等对涂层的结构形貌及防腐蚀性能进行分析研究。结果表明,α-TiP的离子交换功能可吸纳水玻璃中存在的游离Na+,制备得到的硅溶胶涂层中含有片状α-TiP填料可有效提高涂层的阻隔性能,进而提升硅溶胶涂层对钢筋腐蚀的防护性能,且当添加量为0.4 g时涂层防护性能最好。

关键词 α-磷酸氢钛离子交换填料硅溶胶涂层    
Abstract

A silica sol coating for the surface of steel bars was prepared via mechanical blending and ultrasonic dispersion with water glass as the film precursor and α-Titanium hydrogen phosphate (α-TiP) as fillers, since the α-TiP is a cationic layered compound with excellent ion exchange performance. The structural morphology and ion exchange ability of α-TiP, as well as the structural morphology and corrosion resistance of the coating were assessed by means of XRD, FT-IR, SEM, ion chromatography, and electrochemical measurement respectively. The results indicate that with ion exchange function the α-TiP can absorb free sodium ions within the water glass, and the prepared silica sol coating contains flakes of α-TiP filler can effectively improve the barrier performance of the coating, thereby enhance the protective performance of the silica sol coating against steel corrosion, whilst the coating has the best protective performance when the addition amount of α-TiP is 0.4 g.

Key wordsα- titanium hydrogen phosphate    ion exchange fillers    silica sol    coating
收稿日期: 2023-05-08      32134.14.1005.4537.2023.145
ZTFLH:  TG174  
基金资助:国网天津市电力公司科技项目(KJ21-1-12)
通讯作者: 张俊喜,E-mail:zhangjunxi@shiep.edu.cn,研究方向为金属腐蚀与防护
Corresponding author: ZHANG Junxi, E-mail: zhangjunxi@shiep.edu.cn
作者简介: 赵鹏,男,1988年生,高级工程师
图1  不同温度和时间下合成的α-TiP的XRD谱及(002)与(112)峰峰强比
图2  不同水热条件下α-TiP的红外光谱
图3  不同水热条件合成的α-TiP形貌图
图4  不同合成条件合成的α-TiP的离子交换容量
图5  涂层α-TiP改性前后XRD图
图6  涂层样品截面SEM图像及EDS
图7  不同添加量涂层极化曲线图
SampleEcorr / V vs SCEI0 / A·cm-2
0-0.6672.27 × 10-6
0.2-0.5774.15 × 10-8
0.4-0.5168.817 × 10-9
0.6-0.5578.26 × 10-8
表1  极化曲线拟合值
Sample

Time

d

CPEf

nΩ-1·Sn·cm-2

n1

Rf

Ω·cm2

CPEdl

nΩ-1·Sn·cm-2

n2

Rct

Ω·cm2

0 g11.237 × 10-70.75641.808 × 1052.479 × 10-70.71361.72 × 105
31.817 × 10-60.68343143.425 × 10-50.61161.096 × 104
52.38 × 10-50.527125177.609 × 10-60.6536903.4
0.2 g14.772 × 10-100.92578.495 × 1062.138 × 10-80.58332.451 × 107
34.90 × 10-100.92372.826 × 1063.685 × 10-80.36592.371 × 107
56.49 × 10-100.91831.18 × 1061.136 × 10-70.46441.038 × 107
79.152 × 10-100.91943.027 × 1058.179 × 10-80.61243.373 × 105
0.4 g14.288 × 10-100.89674.449 × 1065.79 × 10-80.38011.679 × 108
37.397 × 10-1319.33 × 1061.305 × 10-90.2352.536 × 107
54,474 × 10-120.89678.067 × 1066.125 × 10-90.21861.943 × 108
78.368 × 10-90.29857.732 × 1061.072 × 10-120.98191.166 × 108
0.6 g15.674 × 10-80.90905.207 × 1063.027 × 10-80.54742.932 × 107
34.03 × 10-100.94295.762 × 1054.983 × 10-80.27923.865 × 107
56.14 × 10-100.91546.066 × 1062.273 × 10-70.65473.146 × 107
76.599 × 10-100.91522.159 × 1063.976 × 10-80.47336.076 × 107
表2  不同添加量的涂层的拟合值
图8  不同添加量涂层的Bode图
图9  等效电路图
图10  Rf和Rct随浸泡时间变化曲线
1 Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China[J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
2 James A, Bazarchi E, Chiniforush A A, et al. Rebar corrosion detection, protection, and rehabilitation of reinforced concrete structures in coastal environments: a review[J]. Constr. Build. Mater., 2019, 224: 1026
doi: 10.1016/j.conbuildmat.2019.07.250
3 Jiang J, Wang J Y, Jin W J, et al. Research progress on corrosion and anti-corrosion technology of ribbed steel[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 439
3 姜 军, 王军阳, 金武俊 等. 带肋钢腐蚀及其防腐蚀技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41: 439
4 Barberon F, Baroghel-Bouny V, Zanni H, et al. Interactions between chloride and cement-paste materials[J]. Magn. Reson. Imag., 2005, 23: 267
doi: 10.1016/j.mri.2004.11.021
5 Cai R J, Tian Z S, Ye H L. Durability characteristics and quantification of ultra-high strength alkali-activated concrete[J]. Cem. Concr. Compos., 2022, 134: 104743
doi: 10.1016/j.cemconcomp.2022.104743
6 Kumar V. Protection of steel reinforcement for concrete- a review[J]. Corros. Rev., 1998, 16: 317
7 Sajid H U, Kiran R, Bajwa D S. Soy-protein and corn-derived polyol based coatings for corrosion mitigation in reinforced concrete[J]. Constr. Build. Mater., 2022, 319: 126056
doi: 10.1016/j.conbuildmat.2021.126056
8 Lei L L, Wang Q, Li X D, et al. Fabrication of amphiphobic concrete coating with good abrasion resistance and anti-oil adhesion properties by using waste clam powder[J]. Constr. Build. Mater., 2022, 327: 126862
doi: 10.1016/j.conbuildmat.2022.126862
9 Dong S G, Zhao B, Lin C J, et al. Corrosion behavior of epoxy/zinc duplex coated rebar embedded in concrete in ocean environment[J]. Constr. Build. Mater., 2012, 28: 72
doi: 10.1016/j.conbuildmat.2011.08.026
10 Sadati S, Arezoumandi M, Shekarchi M. Long-term performance of concrete surface coatings in soil exposure of marine environments[J]. Constr. Build. Mater., 2015, 94: 656
doi: 10.1016/j.conbuildmat.2015.07.094
11 Rabi M, Shamass R, Cashell K A. Structural performance of stainless steel reinforced concrete members: a review[J]. Constr. Build. Mater., 2022, 325: 126673
doi: 10.1016/j.conbuildmat.2022.126673
12 Geromel M, Mazzarella O. Experimental and analytical assessment of the behavior of stainless steel reinforced concrete beams[J]. Mater. Struct., 2005, 38: 211
doi: 10.1007/BF02479346
13 Alonso M C, Luna F J, Criado M. Corrosion behavior of duplex stainless steel reinforcement in ternary binder concrete exposed to natural chloride penetration[J]. Constr. Build. Mater., 2019, 199: 385
doi: 10.1016/j.conbuildmat.2018.12.036
14 Alam M A, Samad U A, Sherif E S M, et al. Influence of SiO2 content and exposure periods on the anticorrosion behavior of epoxy nanocomposite coatings[J]. Coatings, 2020, 10: 118
doi: 10.3390/coatings10020118
15 Vijayaraghavan J, Jeevakkumar R, Venkatesan G, et al. Influence of kaolin and dolomite as filler on bond strength of polyurethane coated reinforcement concrete[J]. Constr. Build. Mater., 2022, 325: 126675
doi: 10.1016/j.conbuildmat.2022.126675
16 Huang Y J, Li X W, Zhang X C, et al. Bond properties of epoxy-coated reinforcement to seawater coral concrete[J]. J. Build. Mater., 2020, 23: 1086
16 黄一杰, 李晓蔚, 张锡成 等. 环氧涂层钢筋与海水珊瑚混凝土的黏结性能[J]. 建筑材料学报, 2020, 23: 1086
17 Chen W D, Zhang P Y, Chen Y L, et al. Research progress on modified alkyd resins in China[J]. Thermosetting resin, 2014, 29:56
17 陈卫东, 张鹏云, 陈艳丽 等. 国内改性醇酸树脂研究进展[J]. 热固性树脂, 2014, 29: 56
18 Deng J Y, Li W H, Zhao X, et al. Test and comparison of various types of coatings for concrete[J]. Mater. Prot., 2009, 42(10): 58
18 邓俊英, 李伟华, 赵 霞 等. 不同种类混凝土涂料的性能测试及对比研究[J]. 材料保护, 2009, 42(10): 58
19 Zhao S Y Tong X H, Liu F C, et al. Corrosion resistance of three zinc-rich epoxy coatings[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 563
19 赵书彦, 童鑫红, 刘福春 等. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39: 563
doi: 10.11902/1005.4537.2019.231
20 Xu Q F, Jiang Y S. The effective factors of bond and anchorage performances of epoxy-coated reinforcement[J]. Indust. Constr., 1999, 29(6): 45
20 许清风, 蒋永生. 影响环氧涂层钢筋粘结锚固性能的因素分析[J]. 工业建筑, 1999, 29(6): 45
21 Liu M K, Wu W B, Liu Z Y. Research on the progress in bonding and anchoring mechanism of coated steel bar to concrete[J]. China Concr., 2018, (11): 62
21 刘茂康, 武文博, 刘志勇. 涂层钢筋与混凝土粘结锚固机理研究进展[J]. 混凝土世界, 2018, (11): 62
22 Chruściel J J, Leśniak E. Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates[J]. Prog. Polym. Sci., 2015, 41: 67
doi: 10.1016/j.progpolymsci.2014.08.001
23 Barletta M, Gisario A, Puopolo M, et al. Scratch, wear and corrosion resistant organic inorganic hybrid materials for metals protection and barrier[J]. Mater. Des., 2015, 69: 130
doi: 10.1016/j.matdes.2014.12.048
24 Uvida M C, Trentin A, Harb S V, et al. Nanostructured poly(methyl methacrylate)-silica coatings for corrosion protection of reinforcing steel[J]. ACS Appl. Nano Mater., 2022, 5: 2603
doi: 10.1021/acsanm.1c04281
25 Dalbin S, Maurin G, Nogueira R P, et al. Silica-based coating for corrosion protection of electrogalvanized steel[J]. Surf. Coat. Technol., 2005, 194: 363
doi: 10.1016/j.surfcoat.2004.07.126
26 Yang L. Apply suitable phosphating films[J]. Elec Finish., 1996, 15(1): 43
26 杨 磊. 磷化层的正确选用[J]. 电镀与涂饰, 1996, 15(1): 43
27 Joncoux-Chabrol K, Bonino J P, Gressier M, et al. Improvement of barrier properties of a hybrid sol–gel coating by incorporation of synthetic talc-like phyllosilicates for corrosion protection of a carbon steel[J]. Surf. Coat. Technol., 2012, 206: 2884
doi: 10.1016/j.surfcoat.2011.12.017
28 Zhang X L, Wu Y Q, Li X J. Research and application of silicate adhesive[J]. New Chem. Mater., 2014, 42(10): 233
28 张新荔, 吴义强, 李贤军. 硅酸盐胶黏剂的研究与应用[J]. 化工新型材料, 2014, 42(10): 233
29 Bhardwaj P, Gupta R, Mishra D, et al. Corrosion and fire protective behavior of advanced phosphatic geopolymeric coating on mild steel substrate[J]. Silicon, 2020, 12: 487
doi: 10.1007/s12633-019-00153-1
30 Rokita M, Mozgawa W, Adamczyk A. Transformation of silicate gels during heat treatment in air and in argon – Spectroscopic studies[J]. J. Mol. Struct., 2014, 1070: 125
doi: 10.1016/j.molstruc.2014.04.020
31 Hou C Y, Zhou Y M, Luo H, et al. The analysis of the solidification mechanismes & water resistance improvement accesses of the water-glass[J]. Ceramics, 2011, (8): 18
31 侯彩英, 周艳明, 罗 红 等. 水玻璃的固化机理及其提高耐水性途径分析[J]. 陶瓷, 2011, (8): 18
32 Alberti G, Casciola M, Costantino U. Inorganic ion-exchange pellicles obtained by delamination of α-zirconium phosphate crystals[J]. J. Colloid Interf. Sci., 1985, 107: 256
doi: 10.1016/0021-9797(85)90169-9
33 Allulli S, Ferragina C, La Ginestra A, et al. Preparation and ion-exchange properties of a new phase of the crystalline titanium phosphate, Ti(HPO4)2·2H2O[J]. J. Inorg. Nucl. Chem., 1977, 39: 1043
doi: 10.1016/0022-1902(77)80261-3
34 Li B Y, Sun Q, Zhang Y M, et al. Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions[J]. ACS Appl. Mater. Interfaces, 2017, 9: 12511
doi: 10.1021/acsami.7b01711
35 Zagorodni A A. Chapter 2 - Ion exchangers, their structure and major properties[A]. Zagorodni A A. Ion Exchange Materials[M]. Amsterdam: Elsevier, 2007: 9
36 Liu H F, Cui X M, Zhang W P, et al. Low cost fabrication of anti-corrosive coatings on metal surfaces[J]. Rare Met. Mater. Eng., 2008, 37(suppl.1) : 341
36 刘海锋, 崔学民, 张伟鹏 等. 低成本制备铁基金属表面防腐蚀无机涂层[J]. 稀有金属材料与工程, 2008, 37(): 341
37 Maslova M, Ivanenko V, Gerasimova L, et al. Synthesis of titanium phosphates from unconventional solid precursor and their ion-exchange and electrochemical properties[J]. J. Mater. Sci., 2021, 56: 9929
doi: 10.1007/s10853-021-05876-4
38 Gao Y B, Du X G, Wang P Y, et al. Convenient testing device and assembly method for electrochemical testing of anti-corrosion coating performance[P]. Chin Pat, 201911246313.4, 2020
38 高义斌, 杜晓刚, 王鹏宇 等. 电化学测试防腐涂层性能的便捷检测装置及组装方法[P]. 中国专利, 201911246313.4, 2020
39 Trublet M, Maslova M V, Rusanova D, et al. Mild syntheses and surface characterization of amorphous TiO(OH)(H2PO4)·H2O ion-exchanger[J]. Mater. Chem. Phys., 2016, 183: 467
doi: 10.1016/j.matchemphys.2016.09.002
40 Alberti G, Costantino U. 5 - Intercalation chemistry of acid salts of tetravalent metals with layered structure and related materials[A]. WhittinghamMS, JacobsonAJ. Intercalation Chemistry[M]. New York: Academic Press, 1982: 147
41 Zhang R, Hu Y, Song L, et al. Hydrothermal synthesis and characterization of the layered compound of α-titanium hydrophosphate[J]. Rare Met. Mater. Eng., 2001, 30: 384
41 张 蕤, 胡 源, 宋磊 等. 层状化合物α-磷酸钛的水热合成与表征[J]. 稀有金属材料与工程, 2001, 30: 384
42 Alberti G, Cardini-Galli P, Costantino U, et al. Crystalline insoluble salts of polybasic metals—I Ion-exchange properties of crystalline titanium phosphate[J]. J. Inorg. Nucl. Chem., 1967, 29: 571
doi: 10.1016/0022-1902(67)80063-0
43 Tegehall P E. Ion exchange on α-titanium phosphate and formation of new crystalline phases by hydrolysis of the ion-exchanged phases[J]. Acta Chem. Scand., 1989, 43: 322
doi: 10.3891/acta.chem.scand.43-0322
44 Zhang S H, Kong G, Sun Z W, et al. Effect of formulation of silica‐based solution on corrosion resistance of silicate coating on hot‐dip galvanized steel[J]. Surf. Interf. Anal., 2016, 48: 132
doi: 10.1002/sia.v48.3
45 Santana I, Pepe A, Jimenez-Pique E, et al. Silica-based hybrid coatings for corrosion protection of carbon steel. Part I: effect of pretreatment with phosphoric acid[J]. Surf. Coat. Technol., 2013, 236: 476
doi: 10.1016/j.surfcoat.2012.07.086
[1] 韩东晓, 纪文会, 王通, 王巍. 基于弛豫时间分布和有限元模拟的环氧涂层渗水行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[2] 李硕, 李希超, 赵经香, 戴作强, 徐斌, 孙明月, 郑莉莉. 基于涂层改性炮管寿命的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 295-302.
[3] 杨胜杰, 高燕, 高旭, 赵鹏, 吴伟, 于金山, 张俊喜. 双功能铝酸钙改性硅溶胶钢筋涂层[J]. 中国腐蚀与防护学报, 2024, 44(2): 405-412.
[4] 师超, 李嘉浩, 王荣祥, 张博, 周兰欣, 刘光明, 邵亚薇. 不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[5] 姜伯晨, 类延华, 张玉良, 李晓峰, 刘涛, 董丽华. 功能性超疏水涂层在极地抗冰领域的应用研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 1-14.
[6] 袁小虎, 李定骏, 王天剑, 郭显平, 张乃强, 朱忠亮. 超临界水环境中三种Ni-Cr涂层氧化特性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 119-129.
[7] 李建呈, 赵京, 谢新, 王金龙, 陈明辉, 王福会. 钛合金表面磷酸盐涂层的制备及在高温盐-水蒸气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[8] 凡玉方, 张亚飞, 尹刘森, 赵聪慧, 何艳宾, 张传祥. 碳点在金属防腐领域中的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[9] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[10] 田光元, 严程铭, 杨智皓, 王俊升. 耐腐蚀Mg-Li合金的腐蚀与防护及其性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1255-1263.
[11] 张凯丽, 都俐俐, 谭军, 刘祥周, 马骥, 邱萍. 珊瑚簇状SiO2 超滑防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
[12] 肖文涛, 刘静, 彭晶晶, 张弦, 吴开明. 两种电弧喷涂涂层在中性盐雾环境下的耐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[13] 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[14] 李海燕, 刘欢, 王阁义, 张秀菊, 陈同舟, 俞云, 姚洪. 锅炉受热面的冲蚀磨损与防护综述[J]. 中国腐蚀与防护学报, 2023, 43(5): 957-970.
[15] 宇波, 李彰, 周凯旋, 田浩亮, 房永超, 张晓敏, 金国. MoSi2 改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.