中国腐蚀与防护学报, 2024, 44(2): 413-421 DOI: 10.11902/1005.4537.2023.145

研究报告

钢筋表面双功能磷酸氢钛改性的硅溶胶涂层研究

赵鹏1,2, 郝春艳1,2, 杨胜杰3, 于金山1,2, 武爽4, 于奔1,2, 张俊喜,3

1.国网天津市电力公司电力科学研究院 天津 300384

2.天津市电力物联网企业重点实验室 天津 300384

3.上海电力大学 电力材料防护与新材料上海市重点实验室 上海 200090

4.天津送变电工程有限公司 天津 300000

Silica Sol Coating Modified by Bifunctional Titanium Phosphate for Reinforce Bars

ZHAO Peng1,2, HAO Chunyan1,2, YANG Shengjie3, YU Jinshan1,2, WU Shuang4, YU Ben1,2, ZHANG Junxi,3

1.State Grid Tianjin Electric Power Research Institute, Tianjin 300384, China

2.Tianjin Key Laboratory of Internet of Things in Electricity, Tianjin 300384, China

3.Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China

4.Tianjin Power Transmission and Transformation Engineering Company, Tianjin 300000, China

通讯作者: 张俊喜,E-mail:zhangjunxi@shiep.edu.cn,研究方向为金属腐蚀与防护

收稿日期: 2023-05-08   修回日期: 2023-06-11  

基金资助: 国网天津市电力公司科技项目.  KJ21-1-12

Corresponding authors: ZHANG Junxi, E-mail:zhangjunxi@shiep.edu.cn

Received: 2023-05-08   Revised: 2023-06-11  

Fund supported: State Grid Tianjin Electric Power Company Science and Technology Project.  KJ21-1-12

作者简介 About authors

赵鹏,男,1988年生,高级工程师

摘要

制备了一种用于钢筋表面的硅溶胶涂层,以水玻璃为前驱体,在涂层制备中引入α-磷酸氢钛(α-TiP)填料,采用XRD、FT-IR、SEM以及离子色谱仪等对α-TiP的结构形貌及离子交换能力进行了表征,并采用XRD、FT-IR、SEM、电化学测试等对涂层的结构形貌及防腐蚀性能进行分析研究。结果表明,α-TiP的离子交换功能可吸纳水玻璃中存在的游离Na+,制备得到的硅溶胶涂层中含有片状α-TiP填料可有效提高涂层的阻隔性能,进而提升硅溶胶涂层对钢筋腐蚀的防护性能,且当添加量为0.4 g时涂层防护性能最好。

关键词: α-磷酸氢钛 ; 离子交换填料 ; 硅溶胶 ; 涂层

Abstract

A silica sol coating for the surface of steel bars was prepared via mechanical blending and ultrasonic dispersion with water glass as the film precursor and α-Titanium hydrogen phosphate (α-TiP) as fillers, since the α-TiP is a cationic layered compound with excellent ion exchange performance. The structural morphology and ion exchange ability of α-TiP, as well as the structural morphology and corrosion resistance of the coating were assessed by means of XRD, FT-IR, SEM, ion chromatography, and electrochemical measurement respectively. The results indicate that with ion exchange function the α-TiP can absorb free sodium ions within the water glass, and the prepared silica sol coating contains flakes of α-TiP filler can effectively improve the barrier performance of the coating, thereby enhance the protective performance of the silica sol coating against steel corrosion, whilst the coating has the best protective performance when the addition amount of α-TiP is 0.4 g.

Keywords: α- titanium hydrogen phosphate ; ion exchange fillers ; silica sol ; coating

PDF (7925KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

赵鹏, 郝春艳, 杨胜杰, 于金山, 武爽, 于奔, 张俊喜. 钢筋表面双功能磷酸氢钛改性的硅溶胶涂层研究. 中国腐蚀与防护学报[J], 2024, 44(2): 413-421 DOI:10.11902/1005.4537.2023.145

ZHAO Peng, HAO Chunyan, YANG Shengjie, YU Jinshan, WU Shuang, YU Ben, ZHANG Junxi. Silica Sol Coating Modified by Bifunctional Titanium Phosphate for Reinforce Bars. Journal of Chinese Society for Corrosion and Protection[J], 2024, 44(2): 413-421 DOI:10.11902/1005.4537.2023.145

钢筋混凝土结构耐久性良好,但在恶劣的环境服役会加速混凝土结构劣化,缩短混凝土结构的服役寿命,给混凝土结构带来安全隐患[1]。特别是在滨海盐渍土含有大量的氯化物,氯离子的入侵会导致钢筋表面钝化膜的破坏,钢筋发生腐蚀,进而导致混凝土的开裂[2,3],钢筋腐蚀是造成混凝土劣化的主要原因之一[4,5]。针对于钢筋混凝土腐蚀防护国内外的专家学者做了大量的研究工作[6~9],主要从两方面进行:(1) 增加钢筋混凝土本身的耐蚀性,包括缓蚀剂、高性能混凝土[10]、不锈钢筋[11~13];(2) 表面涂层隔绝腐蚀介质,包括混凝土表面涂层[14]、镀锌钢筋、涂层钢筋[9, 15],以及阴极保护等。在混凝土中添加的缓蚀剂总量较大,成本高,且对混凝土材料还有一定的影响,而不锈钢钢筋、镀锌钢筋等成本较高难以广泛应用。因此,在钢筋表面制备涂层隔绝腐蚀介质,是最经济最有效的防护手段。

目前用于钢筋防护的涂层主要分为有机涂层、有机无机复合涂层、无机涂层3大类,有机涂层主要有环氧树脂涂料[16]、醇酸树脂涂料[17]、聚氨酯涂料[18]和富锌涂料[19]等,其中环氧涂层有着良好的化学稳定性和力学性能。但与混凝土的粘结强度明显降低,且在施工过程中易受磨损破坏,加速了破损处的钢筋的腐蚀[20,21];有机无机复合涂层中有机粘结剂为主的涂层通过添加无机功能性填料提高防护性能、耐磨性、耐候性[22~24],无机功能材料的引入改善了有机涂层的综合性能,但仍具有与混凝土的粘结强度降低的不足,且存在有机溶剂使用的问题。无机涂层中铬酸盐转化膜有毒不再使用[25],而其他诸如磷化层只能起到短时间防锈的作用[26]。硅溶胶涂层具有良好的耐热性、耐酸性、较高的硬度、价格便宜等优点,目前受到广泛关注[27~30]。与有机涂层相比,由于硅溶胶涂层与混凝土组成相近,具有较好的相亲性,硅溶胶涂层应用于钢筋不会降低钢筋与混凝土的粘结强度,同时通过在硅溶胶涂层中引入功能性填料还可以有效抑制侵蚀性离子对钢筋的侵蚀。因此,硅溶胶涂层应用于钢筋是一种理想的防护涂层。用于硅溶胶涂层的制备原料中,水玻璃具有原料来源广、成本低等优点,是一种最适合大批量制备硅溶胶涂层的原料。但是,水玻璃中的Na+在涂层中以游离的形式存在,在服役过程中Na+会溶解导致溶胶涂层的耐水性较差[31]

四价金属磷酸盐具有离子交换能力,且具有良好的化学稳定性和热稳定能力、离子选择性高[32]、耐强酸和强碱[33, 34]等优点。其中,α-磷酸氢钛(α-TiP)是一种阳离子型层状化合物,具有良好的离子交换性能,较高的热稳定性和耐酸碱性。α-TiP中每个钛可以与6个PO3-OH基团共享6个氧,PO3-OH基团通过P-O-P键进行连接形成“层”,Ti与交替分布在这一层上下的PO3-OH基团桥接[35]。水玻璃中游离的Na+可与层间的H+发生交换,实现对Na+的固定,同时释放出H+可调节涂料制备中体系的pH。

本文提出一种用于钢筋表面的硅溶胶涂层,以水玻璃为前驱体,在涂料制备中引入α-TiP填料,利用α-TiP的离子交换功能吸纳水玻璃中存在的游离N+。制备得到的硅溶胶涂层中含有片状α-TiP填料可有效提高涂层的阻隔性能,进而提升硅溶胶涂层对钢筋腐蚀的防护性能,并研究了α-TiP不同添加量对于涂层的改性影响。

1 实验方法

取2.879 g Ti(SO4)2溶于20 mL去离子水中,在搅拌下滴加30 mL 85 %磷酸。超声分散10 min,将混合溶液转入有聚四氟乙烯内衬的不锈钢反应釜中,分别在120℃反应12 h (a1)、120℃反应20 h (a2), 150℃反应12 h (b1)、150℃反应16 h (b2)、150℃反应20 h (b3),180℃反应12 h (c1)、180℃反应16 h (c2)、180℃反应20 h (c3),反应后冷却至室温,将所得产物10000 r/min离心分离,取下层沉淀用去离子水充分洗涤,在60℃干燥得到α-TiP粉末。

采用Q235钢板替代钢筋,将5 cm × 7 cm的Q235钢板依次用400#、600#、800#、1000#、1500#打磨,用石油醚、丙酮清洗除油,酒精超声10 min、去离子水超声5 min,酸洗5 min,去离子水冲掉表面残留的酸,放入磷化液(Zn(NO3)2 56 g/L,Mn(NO3)2 20 g/L,Mn(H2PO4)2·2H2O 24 g/L,C6H8O7·H2O 2 g/L)中70℃磷化15 min,磷化完成后去离子水冲洗吹干表面备用。

分别将0.2、0.4和0.6 g的α-TiP粉末分散在3.5 mL水中超声分散30 min,纳米ZnO粉末0.5 g分散在3.5 mL水中超声分散30 min。掺入适量的氧化锌可以填补涂层的间隙增加涂层的韧性、致密性,也有助于减少Na+的析出增加涂层耐水性[36]。取10 mL的水玻璃(SiO2含量27.5%,NaO含量8.78%,模数3.23),按(氧化锌、α-TiP)顺序在磁力搅拌下将各分散好的填料逐滴加入到水玻璃中,机械搅拌3 h,超声分散30 min,制备出α-TiP改性硅溶胶涂料。取0.7 mL涂料均匀的刷涂在5 cm× 7 cm的磷化板上,室温干燥4 h,真空干燥箱120℃干燥2 h。所得涂层厚度约为20 μm。空白对比样品除不添加α-TiP外,其他步骤与上述相同。

采用扫描电子显微镜(FESEM,JSM-6510)观察α-TiP形貌,采用X射线衍射仪(XRD, D8 Advance)分析样品组成结构,以单色Cu 辐射,在15 kV、20 mA的条件下,扫描速率为2.4(2θ) (o)/min,扫描范围为10°~40°。采用红外光谱分析仪(FT-IR,PerkinElmera)分析α-TiP和涂层的组成,扫描范围为2000~400 cm-1

将0.1 g α-TiP与50 mL的5 × 10-4 mol/L碳酸钠溶液混合,搅拌3 h达到离子交换平衡,采用离子色谱仪测试交换前后Na+浓度。

Na+交换量qe (mg·g-1)通过以下方程式计算[37]

qe=C0-CEm×V

式中:qe为离子交换量,C0为交换溶液的Na+初始浓度,CE为交换溶液的Na+平衡后的浓度,m为用于交换的α-TiP的质量,V用于交换的溶液体积。

采用电化学工作站(Interface1000)对涂层进行电化学测试,所用溶液为含有3.5%(质量分数) NaCl的饱和氢氧化钙溶液(pH = 12.6)。采用三电极体系,铂网作为对电极,饱和甘汞电极为参比电极,涂层样品为工作电极,在一种电化学测试防腐涂层性能的便捷检测装置中进行[38],暴露面积为7 cm2。测试前,将样品浸泡在溶液中30 min获得稳定的开路电位(OCP),随后进行电化学阻抗谱(EIS)和极化曲线测试。EIS的测量的频率范围为105~10-2 Hz,正弦扰动幅值为10 mV。动电位极化扫描范围为-100~+100 mV (vs. OCP),扫描速率0.1667 mV/s;用CView软件进行最小二乘法拟合动电位极化测试结果,用ZSimpWin软件结合等效电路对EIS数据进行解析。

2 结果与讨论

2.1 合成条件

2.1.1 反应时间和温度的影响

图1a为不同温度和时间下所制备的α-TiP的XRD谱,水热法制备的α-TiP衍射峰峰形规整而尖锐,表明试样有良好的结晶度,样品在2θ = 11.54°、20.85°、25.75°处有3个主强衍射峰,对应(002)、(110)、(112)晶面的特征衍射峰,其最强峰(002)出现在2θ = 11.54°,对应的层间距为0.7667 nm[39]。在水热时间一定的情况下,水热温度越低对应(002)晶面的衍射峰越低且较宽(见a1、b1、c1的对比),表明水热温度低生成的晶粒尺寸更小,结晶度较差。图1b为所制备的α-TiP的XRD谱中(002)峰与(112)峰的峰强比。在水热温度不变的情况下,随着水热时间的延长衍射峰的强度增加,(002)晶面与(112)晶面的峰强比变大,而在水热温度为180℃时这种增长更加明显。XRD谱表明,在180℃温度下增加水热时间使得合成α-TiP更有利于(002)晶面的生长,水热时长为20 h时最好。

图1

图1   不同温度和时间下合成的α-TiP的XRD谱及(002)与(112)峰峰强比

Fig.1   XRD patterns (a) and peak to peak ratio between (002) and (112) peaks (b) of α-TiP synthesized at different condition


图2给出了不同水热条件下红外谱图分析结果,在910~1247 cm-1范围内的吸收峰为PO43-的伸缩振动峰[40]。在1010和1030 cm-1处峰形尖有两个小峰也说明了板层结构的完整性[41]。600 cm-1处为HPO42-的变形振动峰。此外,2400 cm-1处无峰的出现也说明了晶体的高结晶度,表明所合成产物为板层结构、结晶度良好的α-TiP,与已知合成方法合成的结果相同[42]

图2

图2   不同水热条件下α-TiP的红外光谱

Fig.2   Infrared spectrum of α-TiP under different hydrothermal conditions


图3为不同条件下水热合成的α-TiP的形貌图,主要为六边形片层状结构,尺寸从100 nm到600 nm不等,厚度分布在20~100 nm之间。图3a为120℃/12 h合成所得样品的SEM图,图3b为120℃/20 h合成所得样品的SEM图,对比图3a,120℃/20 h所得样品厚度增加,粒径尺寸没有增加,120℃条件下合成的粒径小于300 nm,层状厚度分布范围30~100 nm。图3c图3a对比可见,粒径尺寸没有显著变化,粒径均小于300 nm,厚度分布范围由原来的30~100 nm增长到60~100 nm,层状结构更加明显,边缘更加清晰。同样合成时间下,180℃相较于150℃厚度没有明显的增长,但是在180℃条件下而随着时间的延长20 h时其粒径分布从150 nm到600 nm,合成的α-TiP片层状结构明显,粒径分布更均匀。180℃条件下随着水热时间的增加,粒径尺寸逐渐增加。120℃下水热时间的增加层状α-TiP的厚度增加,而180℃条件下更有利于层状α-TiP的横向增长。

图3

图3   不同水热条件合成的α-TiP形貌图

Fig.3   SEM image of the α-TiP sample synthesized at 120oC/12 h (a), 120oC/20 h (b), 150oC/12 h (c), 150oC/16 h (d), 150oC/20 h (e), 180oC/12 h (f), 180oC/16 h (g) and 180oC/20 h (h)


2.1.2 α-TiP的离子交换能力

图4为不同条件下合成的α-TiP离子交换容量随水热时间及温度的变化图。根据α-TiP的结构,其理论最大离子交换量为7.757 mmol/g[39,40],从图4可看出,在水热温度为120和150℃时,离子交换能力随时间的增长并不明显,而当水热时间为180℃时,随着水热时长从12 h增加到20 h,离子交换能力从4.747 mmol/g增加到6.2725 mmol/g。说明延长水热时间对提高离子交换量的影响不大,而水热温度才是主要影响因素。180℃更有利于(002)晶面的生长,延长水热时间更有利于提高Na+的交换量。

图4

图4   不同合成条件合成的α-TiP的离子交换容量

Fig.4   Ion exchange capacity of α-TiP synthesized under different synthesis conditions


2.2 α-TiP改性涂层的性能

图5为改性前后的涂层XRD图谱。由图5可见,涂层的主要组成为无定型SiO2、ZnO、少量的SiO2晶体以及含Na的化合物,15~30°的峰包为无定型SiO2,2θ = 35°左右出现两个ZnO特征峰,改性后的涂层在11.54°、25.1°、36.0°处为α-TiP的特征峰,20.85°及24.2°为交换后的TiP的特征峰[43],证明在涂层中α-TiP可以与Na+进行交换固定Na+

图5

图5   涂层α-TiP改性前后XRD图

Fig.5   XRD patterns before and after coating modification


图6α-TiP改性的涂层截面及EDS结果。图6a截面中溶胶均匀地包裹在α-TiP片层上呈“条状”,表明α-TiP良好的均匀分散在涂层中。图6中EDS结果也证明了涂层中α-TiP的存在。

图6

图6   涂层样品截面SEM图像及EDS

Fig.6   SEM image (a) and EDS result (b) of coating sample


2.3 涂层耐腐蚀性

2.3.1 极化曲线测量

不同添加量的涂层样品的极化曲线如图7所示,相应的解析结果列于表2中,添加α-TiP的涂层的腐蚀电流密度比未添加α-TiP的涂层的腐蚀电流密度低1~2个数量级。添加α-TiP 0.4 g样品的极化曲线对应的腐蚀电流密度最小,腐蚀电位最高,随着添加量的增加,极化曲线向腐蚀电流密度减小的方向移动,腐蚀电位先向高移动再向低移动。当添加量增加到0.6 g时腐蚀电流密度不再继续减小,腐蚀电位不再向高移动。

图7

图7   不同添加量涂层极化曲线图

Fig.7   Polarization curve of coatings with different additives


表1   极化曲线拟合值

Table 1  Fitting result of polarization curve

SampleEcorr / V vs SCEI0 / A·cm-2
0-0.6672.27 × 10-6
0.2-0.5774.15 × 10-8
0.4-0.5168.817 × 10-9
0.6-0.5578.26 × 10-8

新窗口打开| 下载CSV


表2   不同添加量的涂层的拟合值

Table 2  Fit values of coatings with different additives

Sample

Time

d

CPEf

nΩ-1·Sn·cm-2

n1

Rf

Ω·cm2

CPEdl

nΩ-1·Sn·cm-2

n2

Rct

Ω·cm2

0 g11.237 × 10-70.75641.808 × 1052.479 × 10-70.71361.72 × 105
31.817 × 10-60.68343143.425 × 10-50.61161.096 × 104
52.38 × 10-50.527125177.609 × 10-60.6536903.4
0.2 g14.772 × 10-100.92578.495 × 1062.138 × 10-80.58332.451 × 107
34.90 × 10-100.92372.826 × 1063.685 × 10-80.36592.371 × 107
56.49 × 10-100.91831.18 × 1061.136 × 10-70.46441.038 × 107
79.152 × 10-100.91943.027 × 1058.179 × 10-80.61243.373 × 105
0.4 g14.288 × 10-100.89674.449 × 1065.79 × 10-80.38011.679 × 108
37.397 × 10-1319.33 × 1061.305 × 10-90.2352.536 × 107
54,474 × 10-120.89678.067 × 1066.125 × 10-90.21861.943 × 108
78.368 × 10-90.29857.732 × 1061.072 × 10-120.98191.166 × 108
0.6 g15.674 × 10-80.90905.207 × 1063.027 × 10-80.54742.932 × 107
34.03 × 10-100.94295.762 × 1054.983 × 10-80.27923.865 × 107
56.14 × 10-100.91546.066 × 1062.273 × 10-70.65473.146 × 107
76.599 × 10-100.91522.159 × 1063.976 × 10-80.47336.076 × 107

新窗口打开| 下载CSV


2.3.2 EIS

图8为不同添加量的Bode图。通过频率0.01 Hz下的阻抗模值的大小可以初步比较样品的耐蚀性能。图8中0.4 g涂层低频模值1.216 × 108 Ω·cm2比未添加样品的低频模值6.517 × 105 Ω·cm2高两个数量级,其他添加样品的低频模值也保持107 Ω·cm2左右比未添加样品高一个数量级。从图8看出,添加0.4 g涂层模值随浸泡时间的增加仍然保持在高于107 Ω·cm2的水平,涂层的高模值也反映了添加α-TiP涂层具有良好的稳定性。

图8

图8   不同添加量涂层的Bode图

Fig.8   Bode diagram of coatings with different addition amounts: (a1, a2) 0 g, (b1, b2) 0.2 g, (c1, c2) 0.4 g, (d1, d2) 0.6 g


在相角图中,添加α-TiP样品在浸泡初期高频处的相角均高于80°,而未添加样品的高频相角为50°,相角的高频响应反映了涂层的阻隔性能,高频相角越大说明涂层的阻隔性能越好。在浸泡开始涂层的响应主要集中在高频,涂层随着浸泡时间的增加,未添加样品在中频低频响应增强,低频响应的出现表明电解质溶液到达涂层/基板界面发生反应。而添加后的涂层随着浸泡时间的增加,高频处仍保持较高的相角,在10-2~10-1 Hz频率下的响应代表由于扩散产生的Warburg阻抗,0.4 g样品在浸泡的第7 d出现因电解质到达基板反应导致的响应。阻隔性能随α-TiP添加量的增加而增加,当添加量增加到0.6 g时,涂层的阻隔性能反而下降,可能是α-TiP添加过多容易造成α-TiP的团聚,造成涂层不均匀产生缺陷,降低了涂层的阻隔性能。

结合涂层的电化学响应提出了图9所示的等效电路[44],拟合结果如表2所示。等效电路中RfRct分别为涂层膜电阻和电荷转移电阻,CPEf和CPEdl分别代表涂层的常相位角和基体电化学反应的界面电容[45]

图9

图9   等效电路图

Fig.9   Equivalent circuit diagram


根据图9中的等效电路对于不同添加量的涂层的阻抗谱进行解析,得到RfRct随时间变化,如图10所示。由图10可见,添加量为0.2 g的涂层的Rf都随着浸泡时间的增加而减小,添加量为0.4和0.6 g的涂层的Rf都随着浸泡时间的增加先增加后减小,α-TiP添加量0.4 g时涂层具有更高的膜电阻。0.4 g样品电荷转移电阻最大,相比于其他样品大一个数量级。电荷转移电阻反映了基体界面发生反应的速率,电荷转移电阻越大代表基体界面发生腐蚀反应的速率越小。由于层状结构α-TiP在涂层中可以延长溶剂和侵蚀性离子向基体的路径,有效地起到阻隔溶剂分子和侵蚀性离子向基体的扩散,延缓基体发生腐蚀。数据表明0.4 g样品的腐蚀防护能力最好,对电解质液有着更好的阻隔性能,而较少的添加量则起不到明显的阻隔作用,而较多的添加则可能会引起团聚而产生更多的缺陷,导致其阻隔能力下降。

图10

图10   RfRct随浸泡时间变化曲线

Fig.10   Curve of Rf (a) and Rct (b) during different immersion time


当涂层在模拟液中浸泡7 d,0.4 g样品观察到其电化学性能逐渐下降表明金属表面的已开始发生腐蚀,涂层的防护性能逐渐衰减。

3 结论

使用水热法制备了α-TiP,研究了不同水热时间及水热温度对α-TiP晶面取向及离子交换能力的影响。并利用α-TiP离子交换性能以水玻璃为前驱体制备硅溶胶涂层。探究了不同添加量的影响,利用扫描电镜观察α-TiP及涂层截面形貌,采用XRD和红外对α-TiP、涂层成分进行物相分析,最后利用电化学测试来评估涂层的耐蚀性能。得出以下结论:

(1) 利用水热法合成了α-TiP,在120~180℃范围内温度越高越有利于薄片状结构的生长,离子交换能力越高。

(2) α-TiP改性硅溶胶涂层,有效提升了涂层的阻隔性能。添加量为0.4 g的涂层电化学阻隔性能最好,当添加量高于0.4 g,容易造成α-TiP的团聚产生缺陷,涂层的防护性能下降。

(3) 在Ca(OH)2模拟液的环境中,α-TiP的加入可以使硅溶胶涂层在碱性环境下稳定存在,涂层可以在混凝土环境下提供良好的防护性能。

参考文献

Hou B R, Li X G, Ma X M, et al.

The cost of corrosion in China

[J]. npj Mater. Degrad., 2017, 1: 4

DOI      [本文引用: 1]

Corrosion is a ubiquitous and costly problem for a variety of industries. Understanding and reducing the cost of corrosion remain primary interests for corrosion professionals and relevant asset owners. The present study summarises the findings that arose from the landmark “Study of Corrosion Status and Control Strategies in China”, a key consulting project of the Chinese Academy of Engineering in 2015, which sought to determine the national cost of corrosion and costs associated with representative industries in China. The study estimated that the cost of corrosion in China was approximately 2127.8 billion RMB (~ 310 billion USD), representing about 3.34% of the gross domestic product. The transportation and electronics industries were the two that generated the highest costs among all those surveyed. Based on the survey results, corrosion is a major and significant issue, with several key general strategies to reduce the cost of corrosion also outlined.

James A, Bazarchi E, Chiniforush A A, et al.

Rebar corrosion detection, protection, and rehabilitation of reinforced concrete structures in coastal environments: a review

[J]. Constr. Build. Mater., 2019, 224: 1026

DOI      URL     [本文引用: 1]

Jiang J, Wang J Y, Jin W J, et al.

Research progress on corrosion and anti-corrosion technology of ribbed steel

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 439

[本文引用: 1]

姜 军, 王军阳, 金武俊 .

带肋钢腐蚀及其防腐蚀技术研究进展

[J]. 中国腐蚀与防护学报, 2021, 41: 439

[本文引用: 1]

Barberon F, Baroghel-Bouny V, Zanni H, et al.

Interactions between chloride and cement-paste materials

[J]. Magn. Reson. Imag., 2005, 23: 267

DOI      URL     [本文引用: 1]

Cai R J, Tian Z S, Ye H L.

Durability characteristics and quantification of ultra-high strength alkali-activated concrete

[J]. Cem. Concr. Compos., 2022, 134: 104743

DOI      URL     [本文引用: 1]

Kumar V.

Protection of steel reinforcement for concrete- a review

[J]. Corros. Rev., 1998, 16: 317

[本文引用: 1]

Sajid H U, Kiran R, Bajwa D S.

Soy-protein and corn-derived polyol based coatings for corrosion mitigation in reinforced concrete

[J]. Constr. Build. Mater., 2022, 319: 126056

DOI      URL    

Lei L L, Wang Q, Li X D, et al.

Fabrication of amphiphobic concrete coating with good abrasion resistance and anti-oil adhesion properties by using waste clam powder

[J]. Constr. Build. Mater., 2022, 327: 126862

DOI      URL    

Dong S G, Zhao B, Lin C J, et al.

Corrosion behavior of epoxy/zinc duplex coated rebar embedded in concrete in ocean environment

[J]. Constr. Build. Mater., 2012, 28: 72

DOI      URL     [本文引用: 2]

Sadati S, Arezoumandi M, Shekarchi M.

Long-term performance of concrete surface coatings in soil exposure of marine environments

[J]. Constr. Build. Mater., 2015, 94: 656

DOI      URL     [本文引用: 1]

Rabi M, Shamass R, Cashell K A.

Structural performance of stainless steel reinforced concrete members: a review

[J]. Constr. Build. Mater., 2022, 325: 126673

DOI      URL     [本文引用: 1]

Geromel M, Mazzarella O.

Experimental and analytical assessment of the behavior of stainless steel reinforced concrete beams

[J]. Mater. Struct., 2005, 38: 211

DOI      URL    

Alonso M C, Luna F J, Criado M.

Corrosion behavior of duplex stainless steel reinforcement in ternary binder concrete exposed to natural chloride penetration

[J]. Constr. Build. Mater., 2019, 199: 385

DOI      [本文引用: 1]

The corrosion behavior duplex stainless steel rebars embedded in concrete exposed to natural chloride penetration has been carried out. Three duplex stainless steels (DSSs) differentiated in the Ni, Mo and Mn content and two types of concretes elaborated with different binders, Portland cement and Portland cement blended with Slag and Limestone, were employed. The corrosion behavior was followed through E-corr and Rp measurements along the exposure period. The tests were extended up to corrosion detection or to 2 years, and the chloride contents accumulated at the rebar level were determined. The DSS with lower Ni content has demonstrated to show lower corrosion resistance in presence of chlorides and pitting corrosion at lower chloride contents accumulated at the rebar level were detected. The DSSs embedded in OPC concrete resist better to corrosion in presence of chlorides than those rebars embedded in concrete containing blast furnace slag and limestone. (C) 2018 Elsevier Ltd. All rights reserved.

Alam M A, Samad U A, Sherif E S M, et al.

Influence of SiO2 content and exposure periods on the anticorrosion behavior of epoxy nanocomposite coatings

[J]. Coatings, 2020, 10: 118

DOI      URL     [本文引用: 1]

Epoxy coating formulations containing 1%, 3%, and 5% SiO2 nanoparticles were produced and applied on a mild steel substrate to achieve the objective of high performance corrosion resistance. The electrochemical impedance spectroscopy (EIS) technique was employed to measure the anticorrosive properties of coatings. The corrosion tests were performed by exposing the coated samples in a solution of 3.5% NaCl for different periods of time, varied from 1 h and up to 30 days. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analyses revealed the presence of nanoparticles in the final cured samples. Establishing the incorporation of the nanoparticles in the coating formulations was confirmed by employing both of XRD and FT-IR techniques. The FT-IR spectra have proved to be satisfactory indicating that there was a complete reaction between the epoxy resin with the hardener. EIS measurements confirmed that the presence and the increase of SiO2 nanoparticles greatly improved the corrosion resistance of the epoxy coating. The highest corrosion resistance for the coatings was obtained for the formulation with 5% SiO2 nanoparticles content, particularly with prolonging the immersion time to 30 days.

Vijayaraghavan J, Jeevakkumar R, Venkatesan G, et al.

Influence of kaolin and dolomite as filler on bond strength of polyurethane coated reinforcement concrete

[J]. Constr. Build. Mater., 2022, 325: 126675

DOI      URL     [本文引用: 1]

Huang Y J, Li X W, Zhang X C, et al.

Bond properties of epoxy-coated reinforcement to seawater coral concrete

[J]. J. Build. Mater., 2020, 23: 1086

[本文引用: 1]

黄一杰, 李晓蔚, 张锡成 .

环氧涂层钢筋与海水珊瑚混凝土的黏结性能

[J]. 建筑材料学报, 2020, 23: 1086

[本文引用: 1]

Chen W D, Zhang P Y, Chen Y L, et al.

Research progress on modified alkyd resins in China

[J]. Thermosetting resin, 2014, 29:56

[本文引用: 1]

陈卫东, 张鹏云, 陈艳丽 .

国内改性醇酸树脂研究进展

[J]. 热固性树脂, 2014, 29: 56

[本文引用: 1]

Deng J Y, Li W H, Zhao X, et al.

Test and comparison of various types of coatings for concrete

[J]. Mater. Prot., 2009, 42(10): 58

[本文引用: 1]

邓俊英, 李伟华, 赵 霞 .

不同种类混凝土涂料的性能测试及对比研究

[J]. 材料保护, 2009, 42(10): 58

[本文引用: 1]

Zhao S Y Tong X H, Liu F C, et al.

Corrosion resistance of three zinc-rich epoxy coatings

[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 563

[本文引用: 1]

赵书彦, 童鑫红, 刘福春 .

环氧富锌涂层防腐蚀性能研究

[J]. 中国腐蚀与防护学报, 2019, 39: 563

DOI      [本文引用: 1]

制备了添加纳米SO<sub>2</sub>材料的纳米复合环氧富锌涂层,通过测试金属Zn含量、拉开法附着力、浸泡实验、盐雾实验和电化学阻抗谱实验,并与两种未添加纳米材料的环氧富锌涂层防腐蚀性能进行对比研究,结果表明,纳米复合环氧富锌涂层具有良好的附着力和内聚力,前期可以作为有机屏蔽层,中期阴极保护作用温和,持续时间长,后期Zn的反应产物又可以提供涂层良好的屏蔽,耐腐蚀性能显著,而未添加纳米材料的两种富锌涂层由于起泡和锈蚀而失效。

Xu Q F, Jiang Y S.

The effective factors of bond and anchorage performances of epoxy-coated reinforcement

[J]. Indust. Constr., 1999, 29(6): 45

[本文引用: 1]

许清风, 蒋永生.

影响环氧涂层钢筋粘结锚固性能的因素分析

[J]. 工业建筑, 1999, 29(6): 45

[本文引用: 1]

Liu M K, Wu W B, Liu Z Y.

Research on the progress in bonding and anchoring mechanism of coated steel bar to concrete

[J]. China Concr., 2018, (11): 62

[本文引用: 1]

刘茂康, 武文博, 刘志勇.

涂层钢筋与混凝土粘结锚固机理研究进展

[J]. 混凝土世界, 2018, (11): 62

[本文引用: 1]

Chruściel J J, Leśniak E.

Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates

[J]. Prog. Polym. Sci., 2015, 41: 67

DOI      URL     [本文引用: 1]

Barletta M, Gisario A, Puopolo M, et al.

Scratch, wear and corrosion resistant organic inorganic hybrid materials for metals protection and barrier

[J]. Mater. Des., 2015, 69: 130

DOI      URL    

Uvida M C, Trentin A, Harb S V, et al.

Nanostructured poly(methyl methacrylate)-silica coatings for corrosion protection of reinforcing steel

[J]. ACS Appl. Nano Mater., 2022, 5: 2603

DOI      URL     [本文引用: 1]

Dalbin S, Maurin G, Nogueira R P, et al.

Silica-based coating for corrosion protection of electrogalvanized steel

[J]. Surf. Coat. Technol., 2005, 194: 363

DOI      URL     [本文引用: 1]

Yang L.

Apply suitable phosphating films

[J]. Elec Finish., 1996, 15(1): 43

[本文引用: 1]

杨 磊.

磷化层的正确选用

[J]. 电镀与涂饰, 1996, 15(1): 43

[本文引用: 1]

Joncoux-Chabrol K, Bonino J P, Gressier M, et al.

Improvement of barrier properties of a hybrid sol–gel coating by incorporation of synthetic talc-like phyllosilicates for corrosion protection of a carbon steel

[J]. Surf. Coat. Technol., 2012, 206: 2884

DOI      URL     [本文引用: 1]

Zhang X L, Wu Y Q, Li X J.

Research and application of silicate adhesive

[J]. New Chem. Mater., 2014, 42(10): 233

张新荔, 吴义强, 李贤军.

硅酸盐胶黏剂的研究与应用

[J]. 化工新型材料, 2014, 42(10): 233

Bhardwaj P, Gupta R, Mishra D, et al.

Corrosion and fire protective behavior of advanced phosphatic geopolymeric coating on mild steel substrate

[J]. Silicon, 2020, 12: 487

DOI     

Rokita M, Mozgawa W, Adamczyk A.

Transformation of silicate gels during heat treatment in air and in argon – Spectroscopic studies

[J]. J. Mol. Struct., 2014, 1070: 125

DOI      URL     [本文引用: 1]

Hou C Y, Zhou Y M, Luo H, et al.

The analysis of the solidification mechanismes & water resistance improvement accesses of the water-glass

[J]. Ceramics, 2011, (8): 18

[本文引用: 1]

侯彩英, 周艳明, 罗 红 .

水玻璃的固化机理及其提高耐水性途径分析

[J]. 陶瓷, 2011, (8): 18

[本文引用: 1]

Alberti G, Casciola M, Costantino U.

Inorganic ion-exchange pellicles obtained by delamination of α-zirconium phosphate crystals

[J]. J. Colloid Interf. Sci., 1985, 107: 256

DOI      URL     [本文引用: 1]

Allulli S, Ferragina C, La Ginestra A, et al.

Preparation and ion-exchange properties of a new phase of the crystalline titanium phosphate, Ti(HPO4)2·2H2O

[J]. J. Inorg. Nucl. Chem., 1977, 39: 1043

DOI      URL     [本文引用: 1]

Li B Y, Sun Q, Zhang Y M, et al.

Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions

[J]. ACS Appl. Mater. Interfaces, 2017, 9: 12511

DOI      URL     [本文引用: 1]

Zagorodni A A.

Chapter 2 - Ion exchangers, their structure and major properties

[A]. Zagorodni A A. Ion Exchange Materials[M]. Amsterdam: Elsevier, 2007: 9

[本文引用: 1]

Liu H F, Cui X M, Zhang W P, et al.

Low cost fabrication of anti-corrosive coatings on metal surfaces

[J]. Rare Met. Mater. Eng., 2008, 37(suppl.1) : 341

[本文引用: 1]

刘海锋, 崔学民, 张伟鹏 .

低成本制备铁基金属表面防腐蚀无机涂层

[J]. 稀有金属材料与工程, 2008, 37(): 341

[本文引用: 1]

Maslova M, Ivanenko V, Gerasimova L, et al.

Synthesis of titanium phosphates from unconventional solid precursor and their ion-exchange and electrochemical properties

[J]. J. Mater. Sci., 2021, 56: 9929

DOI      [本文引用: 1]

Gao Y B, Du X G, Wang P Y, et al.

Convenient testing device and assembly method for electrochemical testing of anti-corrosion coating performance

[P]. Chin Pat, 201911246313.4, 2020

[本文引用: 1]

高义斌, 杜晓刚, 王鹏宇 .

电化学测试防腐涂层性能的便捷检测装置及组装方法

[P]. 中国专利, 201911246313.4, 2020

[本文引用: 1]

Trublet M, Maslova M V, Rusanova D, et al.

Mild syntheses and surface characterization of amorphous TiO(OH)(H2PO4)·H2O ion-exchanger

[J]. Mater. Chem. Phys., 2016, 183: 467

DOI      URL     [本文引用: 2]

Alberti G, Costantino U. 5 - Intercalation chemistry of acid salts of tetravalent metals with layered structure and related materials[A]. WhittinghamMS, JacobsonAJ. Intercalation Chemistry[M]. New York: Academic Press, 1982: 147

[本文引用: 2]

Zhang R, Hu Y, Song L, et al.

Hydrothermal synthesis and characterization of the layered compound of α-titanium hydrophosphate

[J]. Rare Met. Mater. Eng., 2001, 30: 384

[本文引用: 1]

张 蕤, 胡 源, 宋磊 .

层状化合物α-磷酸钛的水热合成与表征

[J]. 稀有金属材料与工程, 2001, 30: 384

[本文引用: 1]

Alberti G, Cardini-Galli P, Costantino U, et al.

Crystalline insoluble salts of polybasic metals—I Ion-exchange properties of crystalline titanium phosphate

[J]. J. Inorg. Nucl. Chem., 1967, 29: 571

DOI      URL     [本文引用: 1]

Tegehall P E.

Ion exchange on α-titanium phosphate and formation of new crystalline phases by hydrolysis of the ion-exchanged phases

[J]. Acta Chem. Scand., 1989, 43: 322

DOI      URL     [本文引用: 1]

Zhang S H, Kong G, Sun Z W, et al.

Effect of formulation of silica‐based solution on corrosion resistance of silicate coating on hot‐dip galvanized steel

[J]. Surf. Interf. Anal., 2016, 48: 132

DOI      URL     [本文引用: 1]

Santana I, Pepe A, Jimenez-Pique E, et al.

Silica-based hybrid coatings for corrosion protection of carbon steel. Part I: effect of pretreatment with phosphoric acid

[J]. Surf. Coat. Technol., 2013, 236: 476

DOI      URL     [本文引用: 1]

/