Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 213-220     CSTR: 32134.14.1005.4537.2023.029      DOI: 10.11902/1005.4537.2023.029
  研究报告 本期目录 | 过刊浏览 |
轧制对ZM5镁合金腐蚀性能的影响
宋东东1, 万红霞2(), 徐栋1, 周倩1
1.华北电力大学 电站能量传递转化与系统教育部重点实验室 北京 102206
2.中国石油大学(北京)新能源与材料学院 北京 102249
Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy
SONG Dongdong1, WAN Hongxia2(), XU Dong1, ZHOU Qian1
1.Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China
2.School of New Energy and Materials, China University of Petroleum, Beijing 102249, China
引用本文:

宋东东, 万红霞, 徐栋, 周倩. 轧制对ZM5镁合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
Dongdong SONG, Hongxia WAN, Dong XU, Qian ZHOU. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 213-220.

全文: PDF(7504 KB)   HTML
摘要: 

采用析氢、失重、电化学阻抗谱(EIS)、动态电位极化测试、XRD和SEM等方法对比研究了轧制前后ZM5镁合金腐蚀性能和微观组织的变化,并通过第一性原理分析研究了合金不同微观组织的电子功函数,探究轧制对ZM5镁合金腐蚀性能的影响。结果表明,轧制使ZM5发生明显的择优取向,轧制后ZM5的腐蚀失重、析氢量都显著下降,而极化电阻明显上升,表明轧制态镁合金的耐蚀性优于铸造镁合金。模拟计算结果表明α相的重排提高了轧制合金的电子功函数。

关键词 镁合金轧制态腐蚀行为第一性原理电子功函数    
Abstract

The corrosion performance and microstructure of ZM5 Mg-alloy before and after rolling were comparatively studied by hydrogen evolution measurement, mass loss method, electrochemical impedance spectroscopy (EIS), dynamic potential polarization measurement, XRD and SEM. The electron work function of different microstructures was numerically simulated through first principle analysis. The results show that rolling causes an obvious preferred orientation for ZM5 Mg-alloy. The corrosion mass loss and hydrogen evolution of ZM5 Mg-alloy decrease significantly after rolling, while the polarization resistance increases obviously. These all indicated that the corrosion resistance of the rolled ZM5 Mg-alloy is better than that of the cast one. The simulation results show that the rearrangement of α-phase enhances the electronic work function of the Mg-alloy.

Key wordsMg-alloy    rolling    corrosion behavior    first-principles    electron work function
收稿日期: 2023-02-10      32134.14.1005.4537.2023.029
ZTFLH:  TG147  
基金资助:国家自然科学基金(51701055);国家自然科学基金(52101112);中央高校基本科研业务费专项(2023MS011)
通讯作者: 万红霞,E-mail:wanhongxia88@163.com,研究方向为油气装备材料腐蚀与防护
Corresponding author: WAN Hongxia, E-mail: wanhongxia88@163.com
作者简介: 宋东东,男,1987年生,博士,副教授
图1  ZM5镁合金轧制前后的形貌
图2  铸态和轧制态ZM5镁合金的XRD谱图
图3  铸态和轧制态ZM5镁合金在3.5%NaCl浸泡过程中的失重和析氢体积的变化
图4  ZM5镁合金轧制前后在3.5%NaCl中的极化曲线
Sample

Ecorr

V (vs. SCE)

Icorr

A·cm-2

Tafel slope

V·dec-1

Cast-1.6215.091 × 10-4

βa = 0.06336

βb = -0.14123

Roll-1.5751.362 × 10-4

βa = 0.15772

βb = -0.1508

表1  极化曲线拟合数据
图5  铸轧ZM5镁合金在3.5%NaCl溶液中浸泡不同时间的EIS图
图6  铸轧合金不同浸泡时间的EIS等效电路
图7  ZM5镁合金轧制前后在3.5%NaCl溶液中浸泡不同时间的Rp值
图8  ZM5镁合金轧制前后的静电势能曲线和计算模型
1 Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229
doi: 10.1038/nmat4435 pmid: 26480229
2 Pan H, Pang K, Cui F Z, et al. Effect of alloyed Sr on the microstructure and corrosion behavior of biodegradable Mg-Zn-Mn alloy in Hanks' solution [J]. Corros. Sci., 2019, 157: 420
doi: 10.1016/j.corsci.2019.06.022
3 Trang T T T, Zhang J H, Kim J H, et al. Designing a magnesium alloy with high strength and high formability [J]. Nat. Commun., 2018, 9: 2522
doi: 10.1038/s41467-018-04981-4 pmid: 29955065
4 Luo A A. Magnesium: Current and potential automotive applications [J]. JOM, 2002, 54: 42
5 Lentz M, Risse M, Schaefer N, et al. Strength and ductility with { 10 1 ¯ 1 }-{ 10 1 ¯ 2 } double twinning in a magnesium alloy [J]. Nat. Commun., 2016, 7: 11068
doi: 10.1038/ncomms11068 pmid: 27040648
6 Pourbahari B, Mirzadeh H, Emamy M, et al. Enhanced ductility of a fine-grained Mg-Gd-Al-Zn magnesium alloy by hot extrusion [J]. Adv. Eng. Mater., 2018, 20: 1701171
7 Bian M Z, Sasaki T T, Nakata T, et al. Bake-hardenable Mg-Al-Zn-Mn-Ca sheet alloy processed by twin-roll casting [J]. Acta Mater., 2018, 158: 278
doi: 10.1016/j.actamat.2018.07.057
8 Gryguc A, Behravesh S B, Shaha S K, et al. Low-cycle fatigue characterization and texture induced ratcheting behaviour of forged AZ80 Mg alloys [J]. Int. J. Fatigue, 2018, 116: 429
doi: 10.1016/j.ijfatigue.2018.06.028
9 Hou L G, Wang T Z, Wu R Z, et al. Microstructure and mechanical properties of Mg-5Li-1Al sheets prepared by accumulative roll bonding [J]. J. Mater. Sci. Technol., 2018, 34: 317
doi: 10.1016/j.jmst.2017.02.005
10 Birbilis N, Williams G, Gusieva K, et al. Poisoning the corrosion of magnesium [J]. Electrochem. Commun., 2013, 34: 295
doi: 10.1016/j.elecom.2013.07.021
11 Liu Z Q, He X X, Qi K, et al. Galvanic corrosion behavior for galvanic couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1016
11 刘泽琪, 何潇潇, 祁 康 等. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1016
doi: 10.11902/1005.4537.2021.355
12 Zhang Z Q, Chen Z B, Dong Q J, et al. Galvanic corrosion behavior of low alloy steel, stainless steel and Al-Mg alloy in simulated deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 417
12 张泽群, 陈质彬, 董其娟 等. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 417
doi: 10.11902/1005.4537.2021.166
13 Liu Y X, Xu A Y. Characterization of pitting corrosion behavior of AZ91 Mg-alloy without and with MAO coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1034
13 刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1034
doi: 10.11902/1005.4537.2021.320
14 Wan H X, Cai Y, Song D D, et al. Investigation of corrosion behavior of Mg-6Gd-3Y-0.4Zr alloy in Xisha atmospheric simulation solution [J]. Ocean Eng., 2020, 195: 106760
15 Cui Z Y, Ge F, Lin Y, et al. Corrosion behavior of AZ31 magnesium alloy in the chloride solution containing ammonium nitrate [J]. Electrochim. Acta, 2018, 278: 421
doi: 10.1016/j.electacta.2018.05.059
16 Bahmani A, Arthanari S, Shin K S. Improvement of corrosion resistance and mechanical properties of a magnesium alloy using screw rolling [J]. J. Alloy. Compd., 2020, 813: 152155
doi: 10.1016/j.jallcom.2019.152155
17 Gui Z Z, Kang Z X, Li Y Y. Mechanical and corrosion properties of Mg-Gd-Zn-Zr-Mn biodegradable alloy by hot extrusion [J]. J. Alloy. Compd., 2016, 685: 222
doi: 10.1016/j.jallcom.2016.05.241
18 Shuai C J, Yang Y W, Wu P, et al. Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy [J]. J. Alloy. Compd., 2017, 691: 961
doi: 10.1016/j.jallcom.2016.09.019
19 Zhang T, Shao Y W, Meng G Z, et al. Corrosion of hot extrusion AZ91 magnesium alloy: I-relation between the microstructure and corrosion behavior [J]. Corros. Sci., 2011, 53: 1960
doi: 10.1016/j.corsci.2011.02.015
20 Orlov D, Ralston K D, Birbilis N, et al. Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing [J]. Acta Mater., 2011, 59: 6176
doi: 10.1016/j.actamat.2011.06.033
21 Oktay G, ürgen M. Corrosion behaviour of magnesium AZ31 sheet produced by twin roll casting [J]. Corros. Eng. Sci. Technol., 2015, 50: 380
22 Chang T C, Wang J Y, O C M, et al. Grain refining of magnesium alloy AZ31 by rolling [J]. J. Mater. Process. Technol., 2003, 140: 588
doi: 10.1016/S0924-0136(03)00797-0
23 He J J, Mao Y, Lu S L, et al. Texture optimization on Mg sheets by preparing soft orientations of extension twinning for rolling [J]. Mater. Sci. Eng., 2019, 760A: 174
24 Bohlen J, Chmelík F, Dobroň P, et al. Orientation effects on acoustic emission during tensile deformation of hot rolled magnesium alloy AZ31 [J]. J. Alloy. Compd., 2004, 378: 207
doi: 10.1016/j.jallcom.2003.10.102
25 He J J, Jiang B, Yu X W, et al. Strain path dependence of texture and property evolutions on rolled Mg-Li-Al-Zn alloy possessed of an asymmetric texture [J]. J. Alloy. Compd., 2017, 698: 771
doi: 10.1016/j.jallcom.2016.12.205
26 Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev., 1993, 47B: 558
27 Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev., 1999, 59B: 1758
28 Blöchl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
29 Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys. Rev., 1981, 23B: 5048
30 Liu W, Li J C, Zheng W T, et al. Ni Al(110)/Cr(110) interface: A density functional theory study [J]. Phys. Rev., 2006, 73B: 205421
31 Song G L, Johannesson B, Hapugoda S, et al. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc [J]. Corros. Sci., 2004, 46: 955
doi: 10.1016/S0010-938X(03)00190-2
32 Aung N N, Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy [J]. Corros. Sci., 2010, 52: 589
33 Wang Z, Li D Y, Yao Y Y, et al. Wettability, electron work function and corrosion behavior of CoCrFeMnNi high entropy alloy films [J]. Surf. Coat. Technol., 2020, 400: 126222
doi: 10.1016/j.surfcoat.2020.126222
34 Li W, Li D Y. Influence of surface morphology on corrosion and electronic behavior [J]. Acta Mater., 2006, 54: 445
doi: 10.1016/j.actamat.2005.09.017
35 Luo Z, Zhu H, Ying T, et al. First principles calculations on the influence of solute elements and chlorine adsorption on the anodic corrosion behavior of Mg (0001) surface [J]. Surf. Sci., 2018, 672/673: 68
[1] 熊伊铭, 梅婉, 王泽华, 余瑞, 徐诗瑶, 吴磊, 张欣. 磁场作用下5083铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[2] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[3] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[4] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[5] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[6] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[7] 骆晨, 吴雄, 宋汉强, 孙志华, 汤智慧. 海洋环境服役飞机发动机镁合金使用要求和研究方向分析[J]. 中国腐蚀与防护学报, 2023, 43(4): 787-794.
[8] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[9] 黄志凤, 雍奇文, 房蕊, 谢治辉. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[10] 王洪伦, 杨华, 蔡辉, 李博文. Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[11] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[12] 张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[13] 万红霞, 刘重麟, 王子安, 刘茹, 陈长风. P110S油套管在微含硫环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[14] 吕鑫, 邓坤坤, 王翠菊, 聂凯波, 史权新, 梁伟. SiCp尺寸对铸态AZ91镁合金显微组织与腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 135-142.
[15] 张佳欢, 崔中雨, 范林, 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.