Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 1151-1158     CSTR: 32134.14.1005.4537.2023.129      DOI: 10.11902/1005.4537.2023.129
  海洋材料腐蚀与防护及钢筋混凝土耐久性与设施服役安全专栏 本期目录 | 过刊浏览 |
测量不锈钢电化学噪声的非对称表面方法
刘微()
宁夏师范学院物理与电子信息工程学院 固原 756000
Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel
LIU Wei()
School of Physics and Electronic Information Engineering, Ningxia Normal University, Guyuan 756000, China
全文: PDF(3847 KB)   HTML
摘要: 

提出一种基于同种材料不同表面处理的电极配对模式,采集非对称EN时域信号,主要反映单个电极的局部腐蚀扩展动态,从而拓展EN测量在不锈钢点蚀传播过程中的应用。结合EN与各个电极腐蚀电位的交替测量,提供各电极表面状态随浸泡时间的不同发展趋势的证据。研究结果有望提供一种EN测量局部腐蚀扩展过程的新模式,并建立EN信号与单电极上电化学腐蚀过程对应的电化学暂态模型,为测量、分析及预测钝性工程合金在海水中的局部腐蚀行为提供新的思路。

关键词 不锈钢点蚀电化学噪声非对称电极交互递归分析    
Abstract

An electrode pairing mode based on different surface treatments of the same material is proposed in this paper to collect the asymmetric EN signal in the time domain, which might mainly reflect the local corrosion propagation kinetics of one electrode, to expand the application of the EN measurement in the pitting propagation process of stainless steel. Combining the alternant measurement of the EN and the corrosion potential of the respective electrode, the evidence of the different development of each electrode surface state during immersion was provided. The results are expected to provide a new EN measurement configuration for detecting the local corrosion propagation, and establish a transient electrochemical model corresponding to the localized corrosion on one electrode, which provides a new approach for measuring, analyzing, and predicting the local corrosion behavior of the passive engineering alloys in the seawater.

Key wordsstainless steel    pitting corrosion    electrochemical noise    asymmetrical electrodes    cross recurrence analysis
收稿日期: 2023-04-28      32134.14.1005.4537.2023.129
ZTFLH:  TG174  
基金资助:宁夏重点研发计划项目(2019BEB04012)
通讯作者: 刘微,E-mail: liuwei_0043@163.com,研究方向为金属腐蚀电化学分析   
Corresponding author: LIU Wei, E-mail: Liuwei_0043@163.com   
作者简介: 刘微,男,1981年生,博士,副教授

引用本文:

刘微. 测量不锈钢电化学噪声的非对称表面方法[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1151-1158.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2023.129      或      https://www.jcscp.org/CN/Y2023/V43/I5/1151

图1  单个电极上形成点蚀生长电流暂态的等效电路模型
图2  304不锈钢钝化-钝化电极对、抛光-抛光电极对、抛光-钝化电极对在3.5%NaCl溶液浸泡24 h的EN时域信号,及其开端和末尾时段的细节
图3  图2所示ECN信号经小波分析得到的部分信号标准偏差(SDPS)最大值对应的晶体序号,及相应的SDPS值
图4  304不锈钢抛光/钝化处理电极在3.5%NaCl溶液中的动电位阴极极化曲线
图5  304不锈钢抛光-钝化电极对在3.5%NaCl中浸泡24 h末尾10 min EPN信号、及随后分别测量的抛光、钝化电极开路电位变化
图6  304不锈钢抛光-钝化电极对在3.5%NaCl溶液中浸泡不同时段真实阳极电流暂态ia的估计值、ECN测量值及表观阴极电流值ic的形态
图7  304不锈钢抛光-钝化电极采集的ECN-EPN信号及估计阳极电流ia-EPN的交互递归定量参数随时间的演变
图8  304不锈钢抛光-钝化电极对在不同时段的ECN-EPN信号、估计阳极电流ia-EPN信号的交互递归图
1 Li J L, Hughes A E, Yang Y S, et al. Quantitative 3D characterization for kinetics of corrosion initiation and propagation in additively manufactured austenitic stainless steel [J]. Adv. Sci., 2022, 9: 2201162
doi: 10.1002/advs.v9.36
2 Tian W M, Chen F F, Li Z L, et al. Corrosion product concentration in a single three-dimensional pit and the associated pitting dynamics [J]. Corros. Sci., 2020, 173: 108775
doi: 10.1016/j.corsci.2020.108775
3 Suresh G, Mudali U K. Electrochemical noise analysis of pitting corrosion of type 304L stainless steel [J]. Corrosion, 2014, 70: 283
doi: 10.5006/1003
4 Klapper H S, Goellner J, Burkert A, et al. Environmental factors affecting pitting corrosion of type 304 stainless steel investigated by electrochemical noise measurements under potentiostatic control [J]. Corros. Sci., 2013, 75: 239
doi: 10.1016/j.corsci.2013.06.005
5 Tian W M, Du N, Li S M, et al. Metastable pitting corrosion of 304 stainless steel in 3.5% NaCl solution [J]. Corros. Sci., 2014, 85: 372
doi: 10.1016/j.corsci.2014.04.033
6 Heurtault S, Robin R, Rouillard F, et al. On the propagation of open and covered pit in 316l stainless steel [J]. Electrochim. Acta, 2016, 203: 316
doi: 10.1016/j.electacta.2016.01.084
7 Burkert A, Klapper H S, Lehmann J. Novel strategies for assessing the pitting corrosion resistance of stainless steel surfaces [J]. Mater. Corros., 2013, 64: 675
8 Nazarnezhad-Bajestani M, Neshati J, Siadati M H. Determination of SS321 pitting stage in FeCl3 solution based on electrochemical noise measurement data using artificial neural network [J]. J. Electroanal. Chem., 2019, 845: 31
doi: 10.1016/j.jelechem.2019.05.036
9 Alves L M, Cotta R A, Ciarelli P M, et al. Identification of corrosive substances and types of corrosion through electrochemical noise using signal processing and machine learning [J]. J. Control Autom. Electr. Syst., 2019, 30: 16
doi: 10.1007/s40313-018-00423-0
10 Lentka Ł, Smulko J. Methods of trend removal in electrochemical noise data–Overview [J]. Measurement, 2019, 131: 569
doi: 10.1016/j.measurement.2018.08.023
11 Sajadi G S, Hosseini S M A, Saheb V, et al. Using of asymmetric cell to monitor corrosion performance of 304 austenitic stainless steel by electrochemical noise method [J]. J. Mater. Res. Technol., 2023, 22: 107
doi: 10.1016/j.jmrt.2022.11.082
12 Sajadi G S, Saheb V, Shahidi-Zandi M, et al. A study on synergistic effect of chloride and sulfate ions on copper corrosion by using electrochemical noise in asymmetric cells [J]. Sci. Rep., 2022, 12: 14384
doi: 10.1038/s41598-022-18317-2 pmid: 35999448
13 Zeidabadinejad M, Shahidi-Zandi M, Foroughi M M, et al. Advantages of asymmetrical over symmetrical cells for detection of under deposit CO2 corrosion using electrochemical noise [J]. Mater. Corros., 2019, 70: 1999
doi: 10.1002/maco.201910950
14 Bautista A, Bertocci U, Huet F. Noise resistance applied to corrosion measurements: V. Influence of electrode asymmetry [J]. J. Electrochem. Soc., 2001, 148: B412
doi: 10.1149/1.1398277
15 Cottis R A. The significance of electrochemical noise measurements on asymmetric electrodes [J]. Electrochim. Acta, 2007, 52: 7585
doi: 10.1016/j.electacta.2006.12.042
16 Zheng Z B, Zheng Y G. Effects of surface treatments on the corrosion and erosion-corrosion of 304 stainless steel in 3.5% NaCl solution [J]. Corros. Sci., 2016, 112: 657
doi: 10.1016/j.corsci.2016.09.005
17 Klapper H S, Heyn A, Burkert A, et al. The effect of passive layer stability on electrochemical noise signals arising from pitting corrosion of stainless steels [J]. Mater. Corros., 2013, 64: 671
18 Shahidi M, Hosseini S M A, Jafari A H. Comparison between ED and SDPS plots as the results of wavelet transform for analyzing electrochemical noise data [J]. Electrochim. Acta, 2011, 56: 9986
doi: 10.1016/j.electacta.2011.08.091
19 Anita T, Pujar M G, Shaikh H, et al. Assessment of stress corrosion crack initiation and propagation in AISI type 316 stainless steel by electrochemical noise technique [J]. Corros. Sci., 2006, 48: 2689
doi: 10.1016/j.corsci.2005.09.007
20 Lin Y H, Du R G, Hu R G, et al. A correlation study of corrosion resistance and semiconductor properties for the electrochemically modified passive film of stainless Steel [J]. Acta Phys.-Chim. Sin., 2005, 21: 740
doi: 10.3866/PKU.WHXB20050709
20 林玉华, 杜荣归, 胡融刚 等. 不锈钢钝化膜耐蚀性与半导体特性的关联研究 [J]. 物理化学学报, 2005, 21: 740
21 Liu W, Liu H D, Wang C G, et al. Pit volume estimation on the stainless steel according to single current transient [J]. J. Solid State Electrochem., 2022, 26: 1409
doi: 10.1007/s10008-022-05168-0
22 Klapper H S, Goellner J, Heyn A. The influence of the cathodic process on the interpretation of electrochemical noise signals arising from pitting corrosion of stainless steels [J]. Corros. Sci., 2010, 52: 1362
doi: 10.1016/j.corsci.2009.12.021
[1] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[2] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[3] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[4] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[5] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[6] 王艳飞, 李耀州, 黄玉婷, 谢宏琳, 吴炜杰. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[7] 韩瑞珠, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢的热腐蚀行为及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 421-427.
[8] 贺志豪, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[9] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[10] 刘欢欢, 刘光明, 李富天, 孟令奇, 夏侯俊招, 顾佳磊. TP439不锈钢在800 ℃高温水蒸气中的初期氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
[11] 孙士斌, 赵子铭, 高珍鹏, 宫旭辉, 王东胜, 强强, 常雪婷. 317L/FH40复合板在不同温度下摩擦-腐蚀耦合作用机理研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 69-76.
[12] 王碧辉, 肖博, 潘佩媛, 刘聚, 张乃强. 固体氧化物燃料电池金属连接体腐蚀研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 6-12.
[13] 高智悦, 姜波, 樊志彬, 王晓明, 李辛庚, 张振岳. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
[14] 陈婷婷, 武晓雷, 韩培德. SMAT技术制备梯度纳米孪晶结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[15] 王小红, 李子硕, 唐御峰, 谭浩, 蒋焰罡. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1043-1050.