Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 1159-1164     CSTR: 32134.14.1005.4537.2022.399      DOI: 10.11902/1005.4537.2022.399
  海洋材料腐蚀与防护及钢筋混凝土耐久性与设施服役安全专栏 本期目录 | 过刊浏览 |
经济型高耐候钢耐大气腐蚀性能研究
石践(), 胡学文, 何博, 浦红, 郭锐, 汪飞
马鞍山钢铁股份有限公司技术中心 马鞍山 243000
Effect of Cr-Sb Addition on Atmospheric Corrosion Resistance of Economical High Weathering Steel
SHI Jian(), HU Xuewen, HE Bo, PU Hong, GUO Rui, WANG Fei
Technology Center of Masteel, Ma'anshan Iron and Steel Co, Ltd, Ma'anshan 243000, China
全文: PDF(17700 KB)   HTML
摘要: 

在周浸腐蚀条件下,研究了不同Cr-Sb组合高耐候钢的腐蚀行为。结果表明,随着Sb的增加,耐蚀性不断提升;但Sb的添加,增加了试验钢的点蚀倾向。可以通过降Cr提Sb提升试验钢的腐蚀性能,但当Cr降到3.5%时,耐蚀性出现了拐点,腐蚀速率大幅提升。Cr-Sb协同不改变试验钢锈层的物相组成。Cu在锈层与腐蚀坑内富集形核,抑制了S向基体内扩散,提升了材料的耐蚀性。

关键词 协同高耐候钢腐蚀富Cu相    
Abstract

The corrosion behavior of high weathering steels with different among of Cr-Sb addition was studied via cyclic wet-dry corrosion test. The results show that the corrosion resistance is improved, but the pitting tendency increases for the steel with the Sb addition. The corrosion performance of the steel can be improved by reducing Cr while increasing Sb. However, when Cr is reduced to 3.5%, the corrosion resistance shows an inflection point, then the corrosion rate is greatly increased. Cr-Sb synergy does not change the phase composition of the rust scale of the test steel. Cu is enriched and nucleated in the rust scale and corrosion pits, and the Cu-rich phase can inhibit the inward diffusion of S into the matrix, which improves the corrosion resistance of the steel.

Key wordssynergy    high-strength weathering steel    corrosion    Cu-rich phase
收稿日期: 2022-12-15      32134.14.1005.4537.2022.399
ZTFLH:  TG172  
基金资助:安徽省科技重大专项计划(15czz02036)
通讯作者: 石践,E-mail: stoneshi810@163.com,研究方向为耐蚀钢开发与腐蚀性能   
Corresponding author: SHI Jian, E-mail: stoneshi810@163.com   
作者简介: 石践,男,1991年生,工程师,硕士

引用本文:

石践, 胡学文, 何博, 浦红, 郭锐, 汪飞. 经济型高耐候钢耐大气腐蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
SHI Jian, HU Xuewen, HE Bo, PU Hong, GUO Rui, WANG Fei. Effect of Cr-Sb Addition on Atmospheric Corrosion Resistance of Economical High Weathering Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1159-1164.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.399      或      https://www.jcscp.org/CN/Y2023/V43/I5/1159

MaterialCSiMnSCrSbNi+CuTi
0Sb0.020.200.340.0034.5-0.4~1.0≤0.22
0.06Sb0.030.210.300.0034.20.06
0.12Sb0.020.210.340.0033.80.12
0.12Sb+3.5Cr0.020.240.380.0033.50.12
表1  实验材料的化学成分 (mass fraction / %)
图1  实验钢的金相组织
图2  4种实验钢在45 ℃下0.01 mol/L NaHSO3溶液中浸泡72 h的平均腐蚀速率
图3  实验钢腐蚀形貌
图4  4种实验钢材表面腐蚀形貌的SEM像
图5  4种实验钢材的动电位极化曲线
图6  4种试验钢材腐蚀后表面XRD谱
图7  0.12Sb和0.12Sb+3.5Cr实验钢试样的截面腐蚀形貌
图8  内锈层腐蚀形貌的SEM图像
1 Yang S B, Li H G, Jia H Q, et al. Corrosion status and life prediction of railway gondola cars [J]. Railw. Locomot. Car, 2020, 40(4): 85
1 杨松柏, 李洪刚, 贾恒琼 等. 铁路敞车腐蚀状况及寿命预测 [J]. 铁道机车车辆, 2020, 40(4): 85
2 Yang S B. Situation and requirements of material for freight wagon [J]. Railw. Locomot. Car, 2006, 26(1): 1
2 杨松柏. 铁路货车车体材料的现状和需求 [J]. 铁道机车车辆, 2006, 26(1): 1
3 Shi H B, Liu W S, Chen Y D, et al. Analysis of car body corrosion resistance and maintenance cycle adaptability for railway open top wagon [J]. Mech. Eng. Autom., 2021, (5): 158
3 史洪斌, 刘文胜, 陈永东 等. 铁路敞车车体耐腐蚀性与检修周期适应性分析 [J]. 机械工程与自动化, 2021, (5): 158
4 Jiang R F, Jiao H. Processability analysis of S450EW highly weather-resistant steel for rail freight cars [J]. Locomot. Roll. Stock Technol., 2013, (4): 1
4 江锐锋, 焦 辉. 铁路货车用S450EW高耐蚀型耐候钢工艺性能分析 [J]. 机车车辆工艺, 2013, (4): 1
5 Nie Y M, Chen Z Y, Su G Y. Study of welding procedure of S450EW weathering steel [J]. J. Dalian Jiaotong Univ., 2012, 33(3): 45
5 聂友明, 陈增有, 苏广宇. S450EW高耐蚀性耐候钢的焊接工艺 [J]. 大连交通大学学报, 2012, 33(3): 45
6 Chao Y L, Zhou Y L, Di Q K, et al. Effect of micro-alloying elements on corrosion resistance of low carbon steels [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 70
6 晁月林, 周玉丽, 邸全康 等. Cu, P, Cr和Ni对低碳钢耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2014, 34: 70
doi: 10.11902/1005.4537.2013.119
7 Zhang T Y, Liu W, Fan Y M, et al. Effect of synergistic action of Cu/Ni on corrosion resistance of low alloy steel in a simulated tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 511
7 张天翼, 柳 伟, 范玥铭 等. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响 [J]. 中国腐蚀与防护学报, 2019, 39: 511
doi: 10.11902/1005.4537.2018.165
8 Nishimura T, Katayama H, Noda K, et al. Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments [J]. Corros. Sci., 2000, 42: 1611
doi: 10.1016/S0010-938X(00)00018-4
9 Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives [J]. Corros. Sci., 2020, 165: 108416
doi: 10.1016/j.corsci.2019.108416
10 Tan H L, Zhou C, Liu X H, et al. Effect of Cr on corrosion resistance of Q420 steel in atmosphere with high salinity [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 267
10 谭何灵, 周 成, 刘希辉 等. Cr对Q420钢在高盐度大气环境下耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 267
doi: 10.11902/1005.4537.2016.041
11 Zan S Y, He Y, Duan G Z, et al. Influence of Cr content on corrosion behavior of oil-gas pipeline 37Mn5 steel in simulated CO2 Solution [J]. Mater. Prot., 2020, 53(7): 74
11 昝树尧, 贺 扬, 段改庄 等. Cr含量对油气管道37Mn5钢在模拟CO2溶液中腐蚀行为的影响 [J]. 材料保护, 2020, 53(7): 74
12 Xin Z Z, Niu L N, Yin Y G. Influence of Cr content on atmospheric corrosion resistance of atmospheric corrosion resistant steels [J]. Metal World, 2017, (2): 24
12 辛泽洲, 牛丽娜, 尹延刚. Cr含量对耐大气腐蚀钢耐大气腐蚀性能的影响 [J]. 金属世界, 2017, (2): 24
13 Qian Y H, Li Z G, Yang A N. Application and properties of low alloying sulfuric acid dew point corrosion—resistant steels [J]. Spec. Steel, 2005, 26(5): 30
13 钱余海, 李自刚, 杨阿娜. 低合金耐硫酸露点腐蚀钢的性能和应用 [J]. 特殊钢, 2005, 26(5): 30
14 Zhang W, Ma Y P, Liu Y G, et al. Sulfuric-acid dew point corrosion-resistant steel [J]. Anhui Metall., 2009, (3): 25
14 张 武, 马玉平, 刘永刚 等. 耐硫酸露点腐蚀用钢的研究与应用综述 [J]. 安徽冶金, 2009, (3): 25
15 Wang J J, Huang F, Zhou X J, et al. Relative function of effects of alloy elements on corrosion resistance of weathering steels in marine atmosphere [J]. Corros. Prot., 2015, 36: 58
15 王晶晶, 黄 峰, 周学俊 等. 合金元素对耐候钢在海洋大气中耐蚀性影响的交互作用 [J]. 腐蚀与防护, 2015, 36: 58
16 Feng H, Jiang H C, Rong L J, et al. Effect of Cu content on corrosion resistance of a high strength low alloy weathering steel [J]. Corros. Sci. Prot. Technol., 201l, 23: 318
16 封 辉, 姜海昌, 戎利建 等. Cu对低合金高强耐候钢耐蚀性的影响 [J]. 腐蚀科学与防护技术, 201l, 23: 318
17 Cheng P, Liu J, Huang F, et al. Corrosion behavior of 690 MPa weathering bridge steel in simulated industrial atmosphere [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 563
17 程 鹏, 刘 静, 黄 峰 等. 690 MPa级耐候桥梁钢在模拟工业大气环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 563
18 Liu G C, Dong J H, Han E H, et al. Influence of Cu and Mn on corrosion behavior of low alloy steel in a simulated coastal environment [J]. Corros. Sci. Prot. Technol., 2008, 20: 235
18 刘国超, 董俊华, 韩恩厚 等. Cu、Mn的协同作用对低合金钢在模拟海洋大气环境中腐蚀的影响 [J]. 腐蚀科学与防护技术, 2008, 20: 235
19 Zhou G P, Liu Z Y, Qiu Y Q, et al. The improvement of weathering resistance by increasing P contents in cast strips of low carbon steels [J]. Mater. Des., 2009, 30: 4342
doi: 10.1016/j.matdes.2009.04.010
[1] 肖文涛, 刘静, 彭晶晶, 张弦, 吴开明. 两种电弧喷涂涂层在中性盐雾环境下的耐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[2] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[3] 姚勇, 刘国军, 黎石竹, 刘淼然, 陈川, 黄廷城, 林海, 李展江, 刘雨薇, 王振尧. 金属材料腐蚀预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 983-991.
[4] 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[5] 胡杰珍, 蓝文杰, 邓培昌, 吴敬权, 曾俊昊. E690钢在热带海洋大气环境下的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[6] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[7] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[8] 罗维华, 王海涛, 于林, 许实, 刘朝信, 郭宇, 王廷勇. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[9] 李田雨, 王维康, 李扬涛, 包腾飞, 赵梦凡, 沈欣欣, 倪磊, 马庆磊, 田惠文. 超高性能海水海砂混凝土的硫酸盐腐蚀破坏机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[10] 周浩, 尤世界, 王胜利. 铜质文物在CO2 环境中的腐蚀行为及缓蚀剂研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[11] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[12] 陈震宇, 朱忠亮, 马辰昊, 张乃强, 刘宇桐. 加载条件对镍基617合金在超临界水中腐蚀疲劳裂纹扩展速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
[13] 汪洋, 刘元海, 慕仙莲, 刘淼然, 王俊, 李秋平, 陈川. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[14] 李忠诚, 陈圣刚, 郭全全, 郭俊营. 基于COMSOL的核电站安全壳钢衬里外侧腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1133-1139.
[15] 潘代龙, 司晓东, 吕金洪. 流速对碳钢弯管段流动加速腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.