Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 1087-1093     CSTR: 32134.14.1005.4537.2022.321      DOI: 10.11902/1005.4537.2022.321
  研究报告 本期目录 | 过刊浏览 |
流体冲刷作用对SRB的腐蚀行为影响研究
高秋英1,2, 曾文广1,2, 王恒1, 刘元聪3, 扈俊颖3()
1.中石化西北油田分公司 石油工程技术研究院 乌鲁木齐 830011
2.中国石化缝洞型油藏提高采收率重点实验室 乌鲁木齐 830011
3.西南石油大学石油与天然气工程学院 成都 610500
Effect of Fluid Scouring on Sulfate Reducting Bacteria Induced Corrosion of Pipeline Steel
GAO Qiuying1,2, ZENG Wenguang1,2, WANG Heng1, LIU Yuancong3, HU Junying3()
1.Petroleum Engineering Technology Research Institute of Sinopec Northwest Oilfield Company, Urumqi 830011, China
2.Key Labortory for EOR of Fracture Vuggy Reservoir of Sinopec, Urumqi 830011, China
3.School of Petroleum and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China
全文: PDF(6818 KB)   HTML
摘要: 

采用数值仿真与实验相结合研究了流体冲刷下SRB的腐蚀行为。基于计算流体动力学 (CFD) 得到的管道腐蚀区域预测云图和粒子运动轨迹图结果,预判管道腐蚀部位,结果表明管道底部较顶部腐蚀、管道出口处腐蚀较入口处严重;在预判管道腐蚀部位布置研究电极,运用电化学方法以及表面分析方法探究了流体冲刷下SRB的腐蚀规律。结果表明,SRB在金属表面未形成生物膜时 (未进行预膜处理),冲刷腐蚀占主导地位,金属表面有明显的冲刷腐蚀特点,腐蚀产物主要以Fe的氧化物为主。当SRB在金属表面预先形成致密生物膜时(进行预膜处理),SRB腐蚀占主导地位,生物膜会减缓冲刷腐蚀,但膜下SRB的生命活动会与金属基体发生电子交换,从而发生SRB腐蚀,腐蚀产物主要以硫铁化合物为主。

关键词 冲刷腐蚀硫酸盐还原菌CFD模拟电化学分析    
Abstract

Erosion corrosion and sulfate reducing bacteria (SRB) induced corrosion bring harm to the safe operation of pipeline. In this article, the SRB induced corrosion of pipeline steel L360 in fluid scouring environment was studied comparatively by means of numerical simulation and simulation experiments. The predicted cloud map and particle motion trajectory map of the distribution for corrosion areas of pipeline steel were obtained by using computational fluid dynamics (CFD) simulation. Results showed that the most serious corrosion located at the bottom of the pipeline, the corrosion degree at the outlet of the pipeline was higher than that at the entrance of the pipeline. Electrochemical methods and surface analysis methods were used to characterize the SRB induced corrosion in solid-liquid two-phase flowing environment. Results show that when the biofilm of SRB did not exist on the metal surface (i.e., no biofilm of SRB has been formed on the steel through a pre-treatment), the scouring corrosion is dominant, the metal surface shows obvious scouring corrosion characteristics, and the corrosion products are mainly iron oxides. When SRB has formed a dense biofilm on the metal surface (after a proper pre-treatment), SRB corrosion dominates, and the biofilm will inhibit the scouring corrosion, but the life activity of SRB under the film will induce the electron exchange with the metal matrix, so that SRB induced corrosion occurs, and the corrosion products consist mainly of sulfur and iron compounds.

Key wordserosion corrosion    sulfate reducing bacteria    CFD simulation    electrochemical analysis
收稿日期: 2022-10-19      32134.14.1005.4537.2022.321
ZTFLH:  TE257  
基金资助:中石化重点项目课题(319016-5)
通讯作者: 扈俊颖,E-mail: hujunying01@yeah.net,研究方向为油气田腐蚀与防护   
Corresponding author: HU Junying, E-mail: hujunying01@yeah.net   
作者简介: 高秋英,女,1980年生,硕士,教授级高工

引用本文:

高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
GAO Qiuying, ZENG Wenguang, WANG Heng, LIU Yuancong, HU Junying. Effect of Fluid Scouring on Sulfate Reducting Bacteria Induced Corrosion of Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1087-1093.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.321      或      https://www.jcscp.org/CN/Y2023/V43/I5/1087

图1  不同入口流速的粒子迹线图和腐蚀预测云图
图2  试样开路电位随时间变化
图3  试样不同时间的电化学阻抗谱图及等效电路模型图
Samplet / hRf / Ω·cm2Qf / 10-3 F·cm2n
Without SRB pre-film0455.303.6180.900
2453.603.7060.905
4694.204.3970.541
6448.203.6750.900
8391.805.0770.837
With SRB pre-film01214.006.4350.906
21113.006.5410.912
41192.006.6960.908
61193.006.7270.911
81064.007.6450.907
表1  试样的电化学阻抗拟合值
图4  试样的极化曲线
图5  未预膜试样表面腐蚀形貌和EDS
图6  预膜试样表面腐蚀形貌和EDS
t / hCt1 / cell·mL-1Ct2 / cell·mL-1Ct3 / cell·mL-1
0250000025000002500000
260000025000002600000
230000025000002400000
12220000022000002500000
24220000021000002100000
Scour 0 h240000022000002200000
Scour 8 h220000022000002100000
表2  不同实验时间下SRB数量
图7  绝迹稀释法测试SRB数量
1 Xu Y Z, Liu L, Zhou Q P, et al. Understanding the influences of pre-corrosion on the erosion-corrosion performance of pipeline steel [J]. Wear, 2020, 442/443: 203151
2 Meng H, Hu X, Neville A. A systematic erosion-corrosion study of two stainless steels in marine conditions via experimental design [J]. Wear, 2007, 263: 355
doi: 10.1016/j.wear.2006.12.007
3 Zeng L, Shuang S, Guo X P, et al. Erosion-corrosion of stainless steel at different locations of a 90° elbow [J]. Corros. Sci., 2016, 111: 72
doi: 10.1016/j.corsci.2016.05.004
4 Tang X, Xu L Y, Cheng Y F. Electrochemical corrosion behavior of X-65 steel in the simulated oil-sand slurry. II: Synergism of erosion and corrosion [J]. Corros. Sci., 2008, 50: 1469
doi: 10.1016/j.corsci.2008.01.019
5 Zeng L, Zhang G A, Guo X P. Erosion-corrosion at different locations of X65 carbon steel elbow [J]. Corros. Sci., 2014, 85: 318
doi: 10.1016/j.corsci.2014.04.045
6 Elemuren R, Evitts R, Oguocha O, et al. Slurry erosion-corrosion of 90° AISI 1018 steel elbow in saturated potash brine containing abrasive silica particles [J]. Wear, 2018, 410/411: 149
7 Wang W Z, Hu J Y, Zhong X K. Research progress of the erosion-corrosion in oil and gas production and transmission process [J]. Mater. Prot., 2021, 54(9): 123
7 王伟志, 扈俊颖, 钟显康. 油气生产与输送过程中冲刷腐蚀的研究进展 [J]. 材料保护, 2021, 54(9): 123
8 Alley B, Beebe A, Rodgers Jr J, et al. Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources [J]. Chemosphere, 2011, 85: 74
doi: 10.1016/j.chemosphere.2011.05.043 pmid: 21680012
9 Ma G, Gu Y H, Zhao J. Research progress on sulfate-reducing bacteria induced corrosion of steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 289
9 马 刚, 顾艳红, 赵 杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 289
10 Ferris F G, Jack T R, Bramhill B J. Corrosion products associated with attached bacteria at an oil field water injection plant [J]. Can. J. Microbiol., 1992, 38: 1320
doi: 10.1139/m92-217
11 Luo J H, Xu C M, Yang D P. Stress corrosion cracking of X100 pipeline steel in acid soil medium with SRB [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 321
11 罗金恒, 胥聪敏, 杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为 [J]. 中国腐蚀与防护学报, 2016, 36: 321
doi: 10.11902/1005.4537.2015.177
12 Wang X T, Chen X, Han Z Z, et al. Stress corrosion cracking behavior of 2205 duplex stainless steel in 3.5%NaCl solution with sulfate reducing bacteria [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 43
12 王欣彤, 陈 旭, 韩镇泽 等. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 43
doi: 10.11902/1005.4537.2019.268
13 Daly R A, Borton M A, Wilkins M J, et al. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales [J]. Nat. Microbiol., 2016, 1: 16146
doi: 10.1038/nmicrobiol.2016.146 pmid: 27595198
14 Cliffe L, Nixon S L, Daly R A, et al. Identification of persistent sulfidogenic bacteria in shale gas produced waters [J]. Front. Microbiol., 2020, 11: 286
doi: 10.3389/fmicb.2020.00286 pmid: 32153553
15 Shu Y, Yan M C, Wei Y H, et al. Characteristics of SRB biofilm and microbial corrosion of X80 pipeline steel [J]. Acta Metall. Sin., 2018, 54: 1408
15 舒 韵, 闫茂成, 魏英华 等. X80管线钢表面SRB生物膜特征及腐蚀行为 [J]. 金属学报, 2018, 54: 1408
16 Li Y C, Xu D K, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review [J]. J. Mater. Sci. Technol., 2018, 34: 1713
doi: 10.1016/j.jmst.2018.02.023
17 Zhang F, Wang H T, He Y J, et al. Case analysis of microbial corrosion in product oil pipeline [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 795
17 张 斐, 王海涛, 何勇君 等. 成品油输送管道微生物腐蚀案例分析 [J]. 中国腐蚀与防护学报, 2021, 41: 795
18 Ren Y, Zhao H J, Zhou H, et al. Effect of sand size and temperature on synergistic effect of erosion-corrosion for 20 steel in simulated oilfield produced fluid with sand [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 508
18 任 莹, 赵会军, 周 昊 等. 粒径和温度对20号钢冲刷腐蚀协同作用的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 508
19 Sedrez T A, Shirazi S A, Rajkumar Y R, et al. Experiments and CFD simulations of erosion of a 90° elbow in liquid-dominated liquid-solid and dispersed-bubble-solid flows [J]. Wear, 2019, 426/427: 570
20 Stack M M, Abdelrahman S M, Jana B D. A new methodology for modelling erosion-corrosion regimes on real surfaces: Gliding down the galvanic series for a range of metal-corrosion systems [J]. Wear, 2010, 268: 533
doi: 10.1016/j.wear.2009.09.013
21 Li M, Zhu L Z, Lin D H. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components [J]. Environ. Sci. Technol., 2011, 45: 1977
doi: 10.1021/es102624t
22 Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
doi: 10.1016/j.corsci.2017.10.023
23 Peng X Y, Liu X Y. Modification of D-W model for corrosion rate of shale gas pipeline under the synergistic corrosion of SRB and CO2 [J]. Anti-Corros. Methods Mater., 2021, 68: 150
doi: 10.1108/ACMM-10-2020-2397
[1] 杨新宇, 李祯, 段体岗, 黄国胜, 马力, 刘峰, 姜丹. 70Cu-30Ni合金管FeSO4预成膜及冲刷腐蚀行为分析[J]. 中国腐蚀与防护学报, 2023, 43(3): 561-568.
[2] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[3] 马凯军, 王萌萌, 史振龙, 陈长风, 贾小兰. 温度对原油储罐罐底微生物腐蚀影响规律的研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[4] 杨湘愚, 关蕾, 李雨, 张永康, 王冠, 闫德俊. 基于正交试验的90°弯管冲刷腐蚀数值模拟及实验研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[5] 朱海林, 陆小猛, 李晓芬, 王俊霞, 刘建华, 冯丽, 马雪梅, 胡志勇. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
[6] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[7] 任莹, 赵会军, 周昊, 张建伟, 刘雯, 杨足膺, 王磊. 粒径和温度对20号钢冲刷腐蚀协同作用的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 508-516.
[8] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[9] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[10] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[11] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[12] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[13] 胡宗武, 刘建国, 邢蕊, 尹法波. 单相流条件下90°水平弯管冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[14] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[15] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.