Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 1057-1063     CSTR: 32134.14.1005.4537.2022.303      DOI: 10.11902/1005.4537.2022.303
  研究报告 本期目录 | 过刊浏览 |
加载条件对镍基617合金在超临界水中腐蚀疲劳裂纹扩展速率的影响
陈震宇, 朱忠亮, 马辰昊, 张乃强(), 刘宇桐
华北电力大学 国家火力发电工程技术研究中心 北京 102206
Effect of Different Loading Conditions on Corrosion Fatigue Crack Growth Rate of Nickel Base Alloy 617 in Supercritical Water
CHEN Zhenyu, ZHU Zhongliang, MA Chenhao, ZHANG Naiqiang(), LIU Yutong
National Thermal Power Engineering & Technology Research Center, North China Electric Power University, Beijing 102206, China
全文: PDF(4795 KB)   HTML
摘要: 

研究了先进超超临界机组候选镍基617合金在650 °C/25 MPa超临界水中的腐蚀疲劳裂纹扩展速率 (CFCGR)。采用恒应力强度因子 (K) 法进行动态加载,采用直流电位降(DCPD)法对裂纹长度进行实时测量。探究了最大应力强度因子 (Kmax=30, 32, 36, 40 MPa·m1/2)、应力比 (R=0.3, 0.4, 0.5, 0.6)、加载频率 (f=0.01, 1 Hz) 和波形 (正弦波、三角波和梯形波) 对CFCGR的影响。结果表明,随着Kmax的增大,CFCGR单调上升,且两者近似呈线性关系;随着R的降低,CFCGR升高;随着加载频率的升高,CFCGR降低;在两种频率下,正弦波和三角波加载对CFCGR没有明显影响;梯形波与无保持时间的连续循环相比,导致了更大的CFCGR。

关键词 镍基合金腐蚀疲劳裂纹扩展速率最大应力强度因子应力比波形频率    
Abstract

The corrosion fatigue crack growth rate (CFCGR) of nickel base alloy 617, a candidate material for advanced ultra-supercritical unit, in 650 °C/25 MPa supercritical water was studied. The constant stress intensity factor (K) method is used for dynamic loading, and the DC potential drop (DCPD) method is used to measure the crack length in real time. The effect of maximum stress intensity factors (Kmax=30, 32, 36, 40 MPa·m1/2), stress ratios (R=0.3, 0.4, 0.5, 0.6), loading frequencies (f=0.01, 1 Hz) and waveforms (sine wave, triangular wave and trapezoidal wave) on CFCGR were investigated. The results show that the CFCGR increases monotonously with the increase of Kmax, and the relationship between them is approximately linear. CFCGR increases with the decrease of R. With the increase of loading frequency, the CFCGR decreases. Under the two frequencies (f=0.01, 1 Hz), the sine wave and triangular wave loading have no obvious effect on the CFCGR. Trapezoidal waves result in larger CFCGR than continuous cycles without hold time.

Key wordsnickel base alloy    corrosion fatigue    crack growth rate    maximum stress intensity factor    stress ratio    waveform    frequency
收稿日期: 2022-10-01      32134.14.1005.4537.2022.303
ZTFLH:  TM621  
基金资助:国家自然科学基金(52071140)
通讯作者: 张乃强,E-mail: zhnq@ncepu.edu.cn,研究方向为超超临界发电技术、电站高温部件服役安全   
Corresponding author: ZHANG Naiqiang, E-mail: zhnq@ncepu.edu.cn   
作者简介: 陈震宇,男,1996年生,博士生

引用本文:

陈震宇, 朱忠亮, 马辰昊, 张乃强, 刘宇桐. 加载条件对镍基617合金在超临界水中腐蚀疲劳裂纹扩展速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
CHEN Zhenyu, ZHU Zhongliang, MA Chenhao, ZHANG Naiqiang, LIU Yutong. Effect of Different Loading Conditions on Corrosion Fatigue Crack Growth Rate of Nickel Base Alloy 617 in Supercritical Water. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1057-1063.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.303      或      https://www.jcscp.org/CN/Y2023/V43/I5/1057

图1  Inconel 617的金相组织形貌
图2  0.5T-CT试样尺寸
Test stepKmaxMPa·m1/2RWave formFrequency Hz
S1300.3Sine wave0.1
S2300.6Sine wave0.01
S3320.6Sine wave0.01
S4360.6Sine wave0.01
S5400.6Sine wave0.01
S6400.5Sine wave0.01
S7400.4Sine wave0.01
S8400.3Sine wave0.01
表1  CF-1组在超临界水中的实验条件
Test stepKmaxMPa·m1/2RWave formFrequency Hz
S1300.3Sine wave1
S2320.6Sine wave1
S3320.6Triangular wave1
S4320.6Sine wave0.01
S5320.6Triangular wave0.01
S6320.6Trapezoidal wave

0.01(0.5 s+99 s

+0.5 s)

表2  CF-2组在超临界水中的实验条件
图3  CF-1组和CF-2组裂纹长度-时间变化曲线
图4  CFCGR随Kmax的变化
图5  CFCGR随R的变化及其双对数拟合曲线
图6  两种波形和频率下的CFCGR对比
图7  Inconel 617的CFCGR随th的变化
1 Liu H W. An interpretation of the targets of carbon peaking and carbon neutrality with their Implementation: from the perspective of the international law [J]. J. Peking Univ. (Philos. Soc. Sci.), 2022, 59(2): 13
1 柳华文. “双碳”目标及其实施的国际法解读 [J]. 北京大学学报(哲学社会科学版), 2022, 59(2): 13
2 Zhu F H, Wang Y S, Xu Z, et al. Research on the development path of carbon peak and carbon neutrality in China's Power Industry [J]. Electr. Power Technol. Environ. Prot., 2021, 37(3): 9
2 朱法华, 王玉山, 徐 振 等. 中国电力行业碳达峰、碳中和的发展路径研究 [J]. 电力科技与环保, 2021, 37(3): 9
3 Lu S Z. Discussion on the future trend of coal-fired power plants in carbon neutral environment [J]. Sci. Technol. Econom. Market, 2021, (5): 139
3 路澍柘. 浅谈在碳中和环境下的燃煤电厂的未来趋势 [J]. 科技经济市场, 2021, (5): 139
4 Xie H P, Ren S H, Xie Y C, et al. Development opportunities of the coal industry towards the goal of carbon neutrality [J]. J. China Coal Soc., 2021, 46: 2197
4 谢和平, 任世华, 谢亚辰 等. 碳中和目标下煤炭行业发展机遇 [J]. 煤炭学报, 2021, 46: 2197
5 Wang L L. Stage and opportunity of coal under the goal of "double carbon" [N]. China Coal News, 2021-07-15(03)
5 王丽丽. “双碳”目标下煤炭的舞台与机遇 [N]. 中国煤炭报, 2021-07-15(03)
6 Chi C Y, Yu H Y, Xie X S. Critical high temperature materials for 700 ℃ A-USC power plants [J]. World Iron Steel, 2013, 13(2): 42
6 迟成宇, 于鸿垚, 谢锡善. 世界700 ℃等级先进超超临界电站关键高温材料 [J]. 世界钢铁, 2013, 13(2): 42
7 Liu R W, Xiao P, Zhong L, et al. Research progress of advanced 700 ℃ ultra-supercritical coal-fired power generation technology [J]. Therm. Power Gener., 2017, 46(9): 1
7 刘入维, 肖 平, 钟 犁 等. 700℃超超临界燃煤发电技术研究现状 [J]. 热力发电, 2017, 46(9): 1
8 Wang D L. Research and development status and suggestions of 700 ℃ high efficiency ultra supercritical power generation technology [J]. Sci. Technol. Vision, 2014, (36): 330
8 王东雷. 700 ℃高效超超临界发电技术的研发现状及建议 [J]. 科技视界, 2014, (36): 330
9 Mao J X. Latest Development of high-temperature metallic materials in 700 ℃ ultra-supercritical units [J]. Electr. Power Constr., 2013, 34(8): 69
doi: 10.3969/j.issn.1000-7229.2013.08. 013
9 毛健雄. 700 ℃超超临界机组高温材料研发的最新进展 [J]. 电力建设, 2013, 34(8): 69
doi: 10.3969/j.issn.1000-7229.2013.08. 013
10 Wang T J, Fan H, Zhang B Q, et al. Nickel-based superalloy for key components of ultra-supercritical steam turbine operating above 700 ℃ [J]. Dongfang Turb., 2012, (2): 46
10 王天剑, 范 华, 张邦强 等. 700 ℃超超临界汽轮机关键部件用镍基高温合金选材 [J]. 东方汽轮机, 2012, (2): 46
11 Wang T J, Fan H, Zhang B Q, et al. Selection of nickel base superalloy for key components of 700 ℃ advanced ultra supercritical steam turbine [A]. 2012 Annual Meeting of Ultra Supercritical Unit Technology Exchange [C]. Ningbo, 2012: 7
11 王天剑, 范 华, 张邦强 等. 700 ℃先进超超临界汽轮机关键部件用镍基高温合金选材 [A]. 超超临界机组技术交流2012年会 [C]. 宁波, 2012: 7
12 Peng J Q, Sun F M, Wang M Y. Discussion on materials for high and intermediate pressure rotors of ultra supercritical steam turbines above 700 ℃ [A]. 2012 Annual Meeting of Ultra Supercritical Unit Technology Exchange [C]. Ningbo, 2012: 10
12 彭建强, 孙福民, 王梅英. 700 ℃以上等级超超临界汽轮机高中压转子用材探讨 [A]. 超超临界机组技术交流2012年会 [C]. 宁波, 2012: 10
13 Klöwer J, Husemann R U, Bader M. Development of nickel alloys based on alloy 617 for components in 700 °C power plants [J]. Procedia Eng., 2013, 55: 226
doi: 10.1016/j.proeng.2013.03.247
14 Yang H C, Lin F S, Xie X S, et al. R&D progress of 700 ℃ power generation technology and alloy 617 in Europe [J]. Power Equip., 2012, 26: 355
14 杨华春, 林富生, 谢锡善 等. 欧洲700 ℃发电机组研发及617合金研究进展 [J]. 发电设备, 2012, 26: 355
15 Guo Y, Wang C X, Li T J, et al. Microstructure and precipitates of alloy 617B used for 700 ℃ advanced ulta-supercritical power units [J]. Chin. J. Mater. Res., 2016, 30: 841
15 郭 岩, 王彩侠, 李太江 等. 700 ℃超超临界机组用617B镍基合金的组织结构和析出相 [J]. 材料研究学报, 2016, 30: 841
16 Guo Y, Wang B H, Hou S F, et al. Aging precipitates of alloy 617 mod used for 700 ℃ ultra supercritical unit [J]. Proc. CSEE, 2014, 34: 2314
16 郭 岩, 王博涵, 侯淑芳 等. 700 ℃超超临界机组用Alloy 617 mod时效析出相 [J]. 中国电机工程学报, 2014, 34: 2314
17 Mankins W L, Hosier J C, Bassford T H. Microstructure and phase stability of INCONEL alloy 617 [J]. Metall. Trans., 1974, 5B: 2579
18 Jiang H, Dong J X, Zhang M C, et al. A review of the study on alloy 617 for 700 ℃ultra supercritical power plants [J]. World Iron Steel, 2014, 14(3): 26
18 江 河, 董建新, 张麦仓 等. 700 ℃超超临界用锅炉管材617合金研究进展 [J]. 世界钢铁, 2014, 14(3): 26
19 Kaoumi D, Hrutkay K. Tensile deformation behavior and microstructure evolution of Ni-based superalloy 617 [J]. J. Nucl. Mater., 2014, 454: 265
doi: 10.1016/j.jnucmat.2014.08.003
20 Khan H I. Environmentally assisted cracking behavior of candidate materials in ultra-supercritical power plants [D]. Beijing: North China Electric Power University (Beijing), 2019
20 Khan H I. 超超临界电站候选材料环境加速断裂行为 [D]. 北京: 华北电力大学 (北京), 2019
21 Li Y Q, Zhao L Y. Impact of stress intensity factor on mechanical state at the tip of stress corrosion cracking in nickel-based alloys [J]. Corros. Prot., 2016, 37: 128
21 李永强, 赵凌燕. 应力强度因子对镍基合金应力腐蚀开裂裂尖力学特性的影响 [J]. 腐蚀与防护, 2016, 37: 128
22 Liu D, Liu J, Huang F, et al. Corrosion fatigue crack growth prediction model based on stress ratio and threshold for marine engineering steel DH36Z35 in seawater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 163
22 刘 冬, 刘 静, 黄 峰 等. 考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型 [J]. 中国腐蚀与防护学报, 2022, 42: 163
23 Adedipe O, Brennan F, Kolios A. A relative crack opening time correlation for corrosion fatigue crack growth in offshore structures [J]. Fatigue Fract. Eng. Mater. Struct., 2016, 39: 395
doi: 10.1111/ffe.v39.4
24 Liang Y M, Huang Y, Wu Z M. Influence of loading waveforms on corrosion fatigue crack growth for D36 steel [J]. Corros. Prot., 2016, 37: 289
24 梁永梅, 黄 一, 吴智敏. 加载波形对D36钢腐蚀疲劳裂纹扩展速率的影响 [J]. 腐蚀与防护, 2016, 37: 289
25 Xu W Q. Corrosion fatigue behavior of Inconel 617 alloy for boiler in supercritical water environment [D]. Beijing: North China Electric Power University (Beijing), 2018
25 徐炜乔. 超临界水环境中锅炉镍基617合金腐蚀疲劳行为研究 [D]. 北京: 华北电力大学(北京), 2018
26 Khan H I, Zhang N Q, Xu W Q, et al. Effect of maximum stress intensity factor, loading mode, and temperature on corrosion fatigue cracking behavior of Inconel 617 in supercritical water [J]. Int. J. Fatigue, 2019, 118: 22
doi: 10.1016/j.ijfatigue.2018.08.035
27 Pineau A, Antolovich S D. High temperature fatigue of nickel-base superalloys-A review with special emphasis on deformation modes and oxidation [J]. Eng. Fail. Anal., 2009, 16: 2668
doi: 10.1016/j.engfailanal.2009.01.010
28 Clavel M, Pineau A. Frequency and wave-form effects on the fatigue crack growth behavior of alloy 718 at 298 K and 823 K [J]. Metall. Trans., 1978, 9A: 471
29 Dahal J, Maciejewski K, Ghonem H. Loading frequency and microstructure interactions in intergranular fatigue crack growth in a disk Ni-based superalloy [J]. Int. J. Fatigue, 2013, 57: 93
doi: 10.1016/j.ijfatigue.2012.12.009
30 Rodriguez P, Mannan S L. High temperature low cycle fatigue [J]. Sadhana, 1995, 20: 123
doi: 10.1007/BF02747287
31 Dalby S, Tong J. Crack growth in a new nickel-based superalloy at elevated temperature - Part I - Effects of loading waveform and frequency on crack growth [J]. J. Mater. Sci., 2005, 40: 1217
doi: 10.1007/s10853-005-6940-2
32 Tong J, Dalby S, Byrne J. Crack growth in a new nickel-based superalloy at elevated temperature-Part III-Characterisation [J]. J. Mater. Sci., 2005, 40: 1237
doi: 10.1007/s10853-005-6942-0
33 Skelton R P, Gandy D. Creep-fatigue damage accumulation and interaction diagram based on metallographic interpretation of mechanisms [J]. Mater. High Temp., 2008, 25: 27
doi: 10.3184/096034007X300494
34 Totemeier T C, Tian H B. Creep-fatigue-environment interactions in INCONEL 617 [J]. Mater. Sci. Eng., 2007, 468-470A: 81
35 Cabet C, Carroll L, Wright R. Low cycle fatigue and creep-fatigue behavior of alloy 617 at high temperature [J]. J. Press. Vessel Technol., 2013, 135: 061401
[1] 刘冬, 刘静, 黄峰, 杜丽影. 海洋工程结构用钢服役环境模拟及DH36钢腐蚀疲劳裂纹扩展性能研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 959-965.
[2] 王永田, 赵祎璠, 魏啸天, 王嘉伟, 陈诚, 王宇, 张贝贝, 田欣利, 曲作鹏. 垃圾焚烧电站水冷壁镍基合金涂层高温氯腐蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 879-884.
[3] 朱忠亮, 马辰昊, 李宇旸, 肖博, 袁小虎, 王硕, 徐鸿, 张乃强. 镍基合金Inconel617B在700 ℃超临界水环境中的氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 655-661.
[4] 王歧山, 李鸿瑾, 何川, 郑平, 陈旭. 加载波形对X65钢腐蚀疲劳裂纹萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 227-234.
[5] 刘冬, 刘静, 黄峰, 杜丽影, 彭文杰. 考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型[J]. 中国腐蚀与防护学报, 2022, 42(1): 163-168.
[6] 张兹瑜, 吴欣强, 韩恩厚, 柯伟. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[7] 张洁, 曲积钰, 卢金玲, 刘倩, 罗兴锜. 亚临界/超临界水条件下镍基合金 (Incoloy800,825,625)的硫化腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 892-898.
[8] 张陈扬, 刘慧丛, 韩东晓, 朱立群, 李卫平. 微米级SiC/Ni-Co-P复合镀层的制备及影响因素[J]. 中国腐蚀与防护学报, 2021, 41(5): 579-584.
[9] 孙晓光, 王子晗, 徐学旭, 韩晓辉, 李刚卿, 刘智勇. 工业大气环境对Al-Mg-Si合金腐蚀疲劳特性的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 501-507.
[10] 戈方宇, 黄峰, 袁玮, 肖虎, 刘静. 交变载荷频率对MS X65管线钢在H2S介质中腐蚀电化学行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
[11] 张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[12] 谢冬柏,周游宇,鲁金涛,王文,朱圣龙,王福会. Al/Si对镍基合金在超临界水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[13] 廖家鹏,吴欣强. 核电材料高温高压水缺口疲劳性能研究现状与进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
[14] 张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[15] 谢冬柏, 周游宇, 鲁金涛, 王文, 朱圣龙, 王福会. Cr对镍基合金在超临界水中氧化行为的影响研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.