|
|
加载条件对镍基617合金在超临界水中腐蚀疲劳裂纹扩展速率的影响 |
陈震宇, 朱忠亮, 马辰昊, 张乃强( ), 刘宇桐 |
华北电力大学 国家火力发电工程技术研究中心 北京 102206 |
|
Effect of Different Loading Conditions on Corrosion Fatigue Crack Growth Rate of Nickel Base Alloy 617 in Supercritical Water |
CHEN Zhenyu, ZHU Zhongliang, MA Chenhao, ZHANG Naiqiang( ), LIU Yutong |
National Thermal Power Engineering & Technology Research Center, North China Electric Power University, Beijing 102206, China |
引用本文:
陈震宇, 朱忠亮, 马辰昊, 张乃强, 刘宇桐. 加载条件对镍基617合金在超临界水中腐蚀疲劳裂纹扩展速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
CHEN Zhenyu,
ZHU Zhongliang,
MA Chenhao,
ZHANG Naiqiang,
LIU Yutong.
Effect of Different Loading Conditions on Corrosion Fatigue Crack Growth Rate of Nickel Base Alloy 617 in Supercritical Water. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1057-1063.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.303
或
https://www.jcscp.org/CN/Y2023/V43/I5/1057
|
1 |
Liu H W. An interpretation of the targets of carbon peaking and carbon neutrality with their Implementation: from the perspective of the international law [J]. J. Peking Univ. (Philos. Soc. Sci.), 2022, 59(2): 13
|
1 |
柳华文. “双碳”目标及其实施的国际法解读 [J]. 北京大学学报(哲学社会科学版), 2022, 59(2): 13
|
2 |
Zhu F H, Wang Y S, Xu Z, et al. Research on the development path of carbon peak and carbon neutrality in China's Power Industry [J]. Electr. Power Technol. Environ. Prot., 2021, 37(3): 9
|
2 |
朱法华, 王玉山, 徐 振 等. 中国电力行业碳达峰、碳中和的发展路径研究 [J]. 电力科技与环保, 2021, 37(3): 9
|
3 |
Lu S Z. Discussion on the future trend of coal-fired power plants in carbon neutral environment [J]. Sci. Technol. Econom. Market, 2021, (5): 139
|
3 |
路澍柘. 浅谈在碳中和环境下的燃煤电厂的未来趋势 [J]. 科技经济市场, 2021, (5): 139
|
4 |
Xie H P, Ren S H, Xie Y C, et al. Development opportunities of the coal industry towards the goal of carbon neutrality [J]. J. China Coal Soc., 2021, 46: 2197
|
4 |
谢和平, 任世华, 谢亚辰 等. 碳中和目标下煤炭行业发展机遇 [J]. 煤炭学报, 2021, 46: 2197
|
5 |
Wang L L. Stage and opportunity of coal under the goal of "double carbon" [N]. China Coal News, 2021-07-15(03)
|
5 |
王丽丽. “双碳”目标下煤炭的舞台与机遇 [N]. 中国煤炭报, 2021-07-15(03)
|
6 |
Chi C Y, Yu H Y, Xie X S. Critical high temperature materials for 700 ℃ A-USC power plants [J]. World Iron Steel, 2013, 13(2): 42
|
6 |
迟成宇, 于鸿垚, 谢锡善. 世界700 ℃等级先进超超临界电站关键高温材料 [J]. 世界钢铁, 2013, 13(2): 42
|
7 |
Liu R W, Xiao P, Zhong L, et al. Research progress of advanced 700 ℃ ultra-supercritical coal-fired power generation technology [J]. Therm. Power Gener., 2017, 46(9): 1
|
7 |
刘入维, 肖 平, 钟 犁 等. 700℃超超临界燃煤发电技术研究现状 [J]. 热力发电, 2017, 46(9): 1
|
8 |
Wang D L. Research and development status and suggestions of 700 ℃ high efficiency ultra supercritical power generation technology [J]. Sci. Technol. Vision, 2014, (36): 330
|
8 |
王东雷. 700 ℃高效超超临界发电技术的研发现状及建议 [J]. 科技视界, 2014, (36): 330
|
9 |
Mao J X. Latest Development of high-temperature metallic materials in 700 ℃ ultra-supercritical units [J]. Electr. Power Constr., 2013, 34(8): 69
doi: 10.3969/j.issn.1000-7229.2013.08. 013
|
9 |
毛健雄. 700 ℃超超临界机组高温材料研发的最新进展 [J]. 电力建设, 2013, 34(8): 69
doi: 10.3969/j.issn.1000-7229.2013.08. 013
|
10 |
Wang T J, Fan H, Zhang B Q, et al. Nickel-based superalloy for key components of ultra-supercritical steam turbine operating above 700 ℃ [J]. Dongfang Turb., 2012, (2): 46
|
10 |
王天剑, 范 华, 张邦强 等. 700 ℃超超临界汽轮机关键部件用镍基高温合金选材 [J]. 东方汽轮机, 2012, (2): 46
|
11 |
Wang T J, Fan H, Zhang B Q, et al. Selection of nickel base superalloy for key components of 700 ℃ advanced ultra supercritical steam turbine [A]. 2012 Annual Meeting of Ultra Supercritical Unit Technology Exchange [C]. Ningbo, 2012: 7
|
11 |
王天剑, 范 华, 张邦强 等. 700 ℃先进超超临界汽轮机关键部件用镍基高温合金选材 [A]. 超超临界机组技术交流2012年会 [C]. 宁波, 2012: 7
|
12 |
Peng J Q, Sun F M, Wang M Y. Discussion on materials for high and intermediate pressure rotors of ultra supercritical steam turbines above 700 ℃ [A]. 2012 Annual Meeting of Ultra Supercritical Unit Technology Exchange [C]. Ningbo, 2012: 10
|
12 |
彭建强, 孙福民, 王梅英. 700 ℃以上等级超超临界汽轮机高中压转子用材探讨 [A]. 超超临界机组技术交流2012年会 [C]. 宁波, 2012: 10
|
13 |
Klöwer J, Husemann R U, Bader M. Development of nickel alloys based on alloy 617 for components in 700 °C power plants [J]. Procedia Eng., 2013, 55: 226
doi: 10.1016/j.proeng.2013.03.247
|
14 |
Yang H C, Lin F S, Xie X S, et al. R&D progress of 700 ℃ power generation technology and alloy 617 in Europe [J]. Power Equip., 2012, 26: 355
|
14 |
杨华春, 林富生, 谢锡善 等. 欧洲700 ℃发电机组研发及617合金研究进展 [J]. 发电设备, 2012, 26: 355
|
15 |
Guo Y, Wang C X, Li T J, et al. Microstructure and precipitates of alloy 617B used for 700 ℃ advanced ulta-supercritical power units [J]. Chin. J. Mater. Res., 2016, 30: 841
|
15 |
郭 岩, 王彩侠, 李太江 等. 700 ℃超超临界机组用617B镍基合金的组织结构和析出相 [J]. 材料研究学报, 2016, 30: 841
|
16 |
Guo Y, Wang B H, Hou S F, et al. Aging precipitates of alloy 617 mod used for 700 ℃ ultra supercritical unit [J]. Proc. CSEE, 2014, 34: 2314
|
16 |
郭 岩, 王博涵, 侯淑芳 等. 700 ℃超超临界机组用Alloy 617 mod时效析出相 [J]. 中国电机工程学报, 2014, 34: 2314
|
17 |
Mankins W L, Hosier J C, Bassford T H. Microstructure and phase stability of INCONEL alloy 617 [J]. Metall. Trans., 1974, 5B: 2579
|
18 |
Jiang H, Dong J X, Zhang M C, et al. A review of the study on alloy 617 for 700 ℃ultra supercritical power plants [J]. World Iron Steel, 2014, 14(3): 26
|
18 |
江 河, 董建新, 张麦仓 等. 700 ℃超超临界用锅炉管材617合金研究进展 [J]. 世界钢铁, 2014, 14(3): 26
|
19 |
Kaoumi D, Hrutkay K. Tensile deformation behavior and microstructure evolution of Ni-based superalloy 617 [J]. J. Nucl. Mater., 2014, 454: 265
doi: 10.1016/j.jnucmat.2014.08.003
|
20 |
Khan H I. Environmentally assisted cracking behavior of candidate materials in ultra-supercritical power plants [D]. Beijing: North China Electric Power University (Beijing), 2019
|
20 |
Khan H I. 超超临界电站候选材料环境加速断裂行为 [D]. 北京: 华北电力大学 (北京), 2019
|
21 |
Li Y Q, Zhao L Y. Impact of stress intensity factor on mechanical state at the tip of stress corrosion cracking in nickel-based alloys [J]. Corros. Prot., 2016, 37: 128
|
21 |
李永强, 赵凌燕. 应力强度因子对镍基合金应力腐蚀开裂裂尖力学特性的影响 [J]. 腐蚀与防护, 2016, 37: 128
|
22 |
Liu D, Liu J, Huang F, et al. Corrosion fatigue crack growth prediction model based on stress ratio and threshold for marine engineering steel DH36Z35 in seawater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 163
|
22 |
刘 冬, 刘 静, 黄 峰 等. 考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型 [J]. 中国腐蚀与防护学报, 2022, 42: 163
|
23 |
Adedipe O, Brennan F, Kolios A. A relative crack opening time correlation for corrosion fatigue crack growth in offshore structures [J]. Fatigue Fract. Eng. Mater. Struct., 2016, 39: 395
doi: 10.1111/ffe.v39.4
|
24 |
Liang Y M, Huang Y, Wu Z M. Influence of loading waveforms on corrosion fatigue crack growth for D36 steel [J]. Corros. Prot., 2016, 37: 289
|
24 |
梁永梅, 黄 一, 吴智敏. 加载波形对D36钢腐蚀疲劳裂纹扩展速率的影响 [J]. 腐蚀与防护, 2016, 37: 289
|
25 |
Xu W Q. Corrosion fatigue behavior of Inconel 617 alloy for boiler in supercritical water environment [D]. Beijing: North China Electric Power University (Beijing), 2018
|
25 |
徐炜乔. 超临界水环境中锅炉镍基617合金腐蚀疲劳行为研究 [D]. 北京: 华北电力大学(北京), 2018
|
26 |
Khan H I, Zhang N Q, Xu W Q, et al. Effect of maximum stress intensity factor, loading mode, and temperature on corrosion fatigue cracking behavior of Inconel 617 in supercritical water [J]. Int. J. Fatigue, 2019, 118: 22
doi: 10.1016/j.ijfatigue.2018.08.035
|
27 |
Pineau A, Antolovich S D. High temperature fatigue of nickel-base superalloys-A review with special emphasis on deformation modes and oxidation [J]. Eng. Fail. Anal., 2009, 16: 2668
doi: 10.1016/j.engfailanal.2009.01.010
|
28 |
Clavel M, Pineau A. Frequency and wave-form effects on the fatigue crack growth behavior of alloy 718 at 298 K and 823 K [J]. Metall. Trans., 1978, 9A: 471
|
29 |
Dahal J, Maciejewski K, Ghonem H. Loading frequency and microstructure interactions in intergranular fatigue crack growth in a disk Ni-based superalloy [J]. Int. J. Fatigue, 2013, 57: 93
doi: 10.1016/j.ijfatigue.2012.12.009
|
30 |
Rodriguez P, Mannan S L. High temperature low cycle fatigue [J]. Sadhana, 1995, 20: 123
doi: 10.1007/BF02747287
|
31 |
Dalby S, Tong J. Crack growth in a new nickel-based superalloy at elevated temperature - Part I - Effects of loading waveform and frequency on crack growth [J]. J. Mater. Sci., 2005, 40: 1217
doi: 10.1007/s10853-005-6940-2
|
32 |
Tong J, Dalby S, Byrne J. Crack growth in a new nickel-based superalloy at elevated temperature-Part III-Characterisation [J]. J. Mater. Sci., 2005, 40: 1237
doi: 10.1007/s10853-005-6942-0
|
33 |
Skelton R P, Gandy D. Creep-fatigue damage accumulation and interaction diagram based on metallographic interpretation of mechanisms [J]. Mater. High Temp., 2008, 25: 27
doi: 10.3184/096034007X300494
|
34 |
Totemeier T C, Tian H B. Creep-fatigue-environment interactions in INCONEL 617 [J]. Mater. Sci. Eng., 2007, 468-470A: 81
|
35 |
Cabet C, Carroll L, Wright R. Low cycle fatigue and creep-fatigue behavior of alloy 617 at high temperature [J]. J. Press. Vessel Technol., 2013, 135: 061401
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|