Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 1049-1056     CSTR: 32134.14.1005.4537.2022.298      DOI: 10.11902/1005.4537.2022.298
  研究报告 本期目录 | 过刊浏览 |
铜质文物在CO2 环境中的腐蚀行为及缓蚀剂研究
周浩1, 尤世界2, 王胜利2()
1.上海博物馆文物保护科技中心 上海 200231
2.哈尔滨工业大学环境学院 城市水资源与水环境国家重点实验室 哈尔滨 150090
Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment
ZHOU Hao1, YOU Shijie2, WANG Shengli2()
1.Conservation Center, Shanghai Museum, Shanghai 200231, China
2.State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
全文: PDF(4596 KB)   HTML
摘要: 

采用石英晶体微天平 (QCM) 反应性监测技术,结合Cu表面腐蚀产物分析,揭示了铜质文物在CO2环境中的初期腐蚀行为。进而针对性地引入苯骈三氮唑 (BTA) 和L-半胱氨酸 (CYS) 为主的复配气相缓蚀剂 (VCI) 以提高对铜质文物的抗腐蚀能力,同时结合电化学阻抗谱 (EIS) 技术和密度泛函理论 (DFT) 研究了复配VCI对铜质文物的缓蚀机制。结果表明,CO2浓度的增大以及相对湿度的升高均会加速铜质文物的腐蚀,在CO2环境暴露后的初期,腐蚀产物主要为Cu2O、CuO和CuCO3·Cu(OH)2。BTA与CYS对铜质文物腐蚀有显著的协同缓蚀性能,当BTA与CYS复配比为4∶1时,缓蚀率最高为86.2%。由于CYS与BTA相比,其较小的尺寸而产生较少的空间位阻,可以充分填补BTA膜的空隙,使得复合缓蚀剂膜更加致密。

关键词 铜质文物CO2气氛环境腐蚀机理石英晶体微天平气相缓蚀剂    
Abstract

Carbon dioxide (CO2) is a gaseous pollutant found in museums that can seriously damage the original appearance of copper artifacts through local acidification and corrosion. Aiming to simulate the CO2 induced corrosion of the real copper artifacts, a quartz-crystal microbalance (QCM) in conjunction with corrosion products analysis techniques is used to reveal the initial corrosion behavior and regularities of Cu in the CO2 containing environment. Furthermore, vapor-phase corrosion inhibitors (VCI) compounded with benzotriazole (BTA) and L-cysteine (CYS) were specifically formulated to improve the anti-corrosion ability of Cu. In this work, we investigated the anticorrosive mechanism of VCI on Cu by means of electrochemical impedance spectroscopy (EIS) technology and density functional theory (DFT). The results demonstrated that with the increase of CO2 concentration and relative humidity content of the environment, the Cu corrosion was accelerated, and the initial corrosion products consist mainly of Cu2O, CuO and CuCO3∙Cu(OH)2 after exposure to CO2 environment. BTA and CYS have significant synergistic anti-corrosion performance for Cu. When the compound radio of BTA to CYS is 4∶1, the highest corrosion inhibition efficiency is 86.2%. Which may be ascribed to that the CYS molecular with relatively smaller size can fully fill the defects of the BTA film, thus causing a greater densification of the anti-corrosion film.

Key wordscopper relics    CO2 atmosphere environment    corrosion mechanism    quartz crystal microbalance    vapor corrosion inhibitor
收稿日期: 2022-09-26      32134.14.1005.4537.2022.298
ZTFLH:  TG174  
基金资助:国家自然科学基金(51671117)
通讯作者: 王胜利,E-mail: tckitten@163.com,研究方向为应用电化学理论与技术   
Corresponding author: WANG Shengli, E-mail: tckitten@163.com   
作者简介: 周浩,男,1970年生,副研究馆员

引用本文:

周浩, 尤世界, 王胜利. 铜质文物在CO2 环境中的腐蚀行为及缓蚀剂研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1049-1056.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.298      或      https://www.jcscp.org/CN/Y2023/V43/I5/1049

图1  镀铜石英晶振片
图2  镀铜石英晶振片的频率,质量和腐蚀速率随时间变化曲线
图3  不同条件下镀铜石英晶振片的频率、腐蚀速率随时间变化曲线
图4  不同暴露环境下的XPS谱
图5  不同BTA-CYS复配比处理后Cu的Nyquist图和相应的等效电路
Inhibitor

Rs

Ω·cm2

Rct

Ω·cm2

Cdl

μF·cm-2

Rfilm

Ω·cm2

Cfilm

μF·cm-2

Zw

Ω·cm2

Rt

Ω·cm2

ηS
Blank3.8274.815.96--0.000474.8--
BTA3.67152.16.0918.11.53-170.256.1%-

BTA∶CYS

(4∶1)

3.41482.61.2159.50.19-542.186.2%1.9

BTA∶CYS

(3∶2)

3.21354.92.1033.60.28-388.580.7%1.4

BTA∶CYS

(1∶1)

2.872083.4125.60.75-233.667.9%0.8

BTA∶CYS

(1∶4)

3.67127.46.4114.41.49-141.847.3%0.5
CYS3.69109.17.8013.32.66-122.438.9%-
表1  不同BTA-CYS复配比对Cu在CO2中电化学阻抗拟合参数
图6  BTA与CYS的优化几何结构、HOMO和LUMO轨道能量分布图
CompoundELUMO / eVEHOMO / eVΔE / eV
BTA-0.045-0.2430.198
CYS-0.013-0.2410.228
表2  基于DFT计算得到的BTA和CYS的量子化学和分子动力学参数
图7  BTA-CYS对Cu的缓蚀机制
1 Yi C X, Zhu B F, Chen Y, et al. Adsorption and protective behavior of BTAH on the initial atmospheric corrosion process of copper under thin film of chloride solutions [J]. Sci. Rep., 2018, 8: 5606
doi: 10.1038/s41598-018-23927-w pmid: 29618834
2 Petiti C, Toniolo L, Gulotta D, et al. Effects of cleaning procedures on the long-term corrosion behavior of bronze artifacts of the cultural heritage in outdoor environment [J]. Environ. Sci. Pollut. Res., 2020, 27: 13081
doi: 10.1007/s11356-020-07814-4
3 Thorhallsson A I, Csáki I, Geambazu L E, et al. Effect of alloying ratios and Cu-addition on corrosion behaviour of CoCrFeNiMo high-entropy alloys in superheated steam containing CO2, H2S and HCl [J]. Corros. Sci., 2021, 178: 109083
doi: 10.1016/j.corsci.2020.109083
4 Chen Z Y, Persson D, Nazarov A, et al. In situ studies of the effect of CO2 on the initial NaCl-induced atmospheric corrosion of copper [J]. J. Electrochem. Soc., 2005, 152: B342
doi: 10.1149/1.1984448
5 Cai Y K, Zhao Y, Ma X B, et al. Influence of environmental factors on atmospheric corrosion in dynamic environment [J]. Corros. Sci., 2018, 137: 163
doi: 10.1016/j.corsci.2018.03.042
6 Azmi N S M, Mohamed D, Tadza M Y M. Effects of various relative humidity conditions on copper corrosion behavior in bentonite [J]. Mater. Today: Proc., 2022, 48: 801
7 Raja P B, Ismail M, Ghoreishiamiri S, et al. Reviews on corrosion inhibitors: a short view [J]. Chem. Eng. Commun., 2016, 203: 1145
doi: 10.1080/00986445.2016.1172485
8 Salvadori B, Cagnini A, Galeotti M, et al. Traditional and innovative protective coatings for outdoor bronze: application and performance comparison [J]. J. Appl. Polym. Sci., 2018, 135: 46011
doi: 10.1002/app.46011
9 Neodo S, Carugo D, Wharton J A, et al. Electrochemical behaviour of nickel-aluminium bronze in chloride media: Influence of pH and benzotriazole [J]. J. Electroanal. Chem., 2013, 695: 38
doi: 10.1016/j.jelechem.2013.02.007
10 Kovačević N, Milošev I, Kokalj A. The roles of mercapto, benzene, and methyl groups in the corrosion inhibition of imidazoles on copper: II. Inhibitor-copper bonding [J]. Corros. Sci., 2015, 98: 457
doi: 10.1016/j.corsci.2015.05.041
11 Javidparvar A A, Naderi R, Ramezanzadeh B. L-cysteine reduced/functionalized graphene oxide application as a smart/control release nanocarrier of sustainable cerium ions for epoxy coating anti-corrosion properties improvement [J]. J. Hazard. Mater., 2020, 389: 122135
doi: 10.1016/j.jhazmat.2020.122135
12 Zhang Q H, Li Y Y, Zhu G Y, et al. In-depth insight into the synergistic inhibition mechanism of S-benzyl-L-cysteine and thiourea on the corrosion of carbon steel in the CO2-saturated oilfield produced water [J]. Corros. Sci., 2021, 192: 109807
doi: 10.1016/j.corsci.2021.109807
13 Wan S, Ma X Z, Miao C H, et al. Inhibition of 2-phenyl imidazoline on chloride-induced initial atmospheric corrosion of copper by quartz crystal microbalance and electrochemical impedance [J]. Corros. Sci., 2020, 170: 108692
doi: 10.1016/j.corsci.2020.108692
14 Dehri I, Yazici B, Erbil M, et al. The effects of SO2 and NH3 on the atmospheric corrosion of galvanized iron sheet [J]. Corros. Sci., 1994, 36: 2181
doi: 10.1016/0010-938X(94)90016-7
15 Tian H, Cheng Y F, Li W, et al. Triazolyl-acylhydrazone derivatives as novel inhibitors for copper corrosion in chloride solutions [J]. Corros. Sci., 2015, 100: 341
doi: 10.1016/j.corsci.2015.08.022
16 Zhang M L, Zhao J M. Research progress of synergistic inhibition effect and mechanism [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 1
16 张漫路, 赵景茂. 缓蚀剂协同效应与协同机理的研究进展 [J]. 中国腐蚀与防护学报, 2016, 36: 1
doi: 10.11902/1005.4537.2015.022
17 Zhu Y H, Zhuang J, Zeng X G. Mechanism of (NH4)S2O8 to enhance the anti-corrosion performance of Mo-Ce inhibitor on X80 steel in acid solution [J]. Appl. Surf. Sci., 2014, 313: 31
doi: 10.1016/j.apsusc.2014.05.117
18 Rodahl M, Kasemo B. On the measurement of thin liquid overlayers with the quartz-crystal microbalance [J]. Sens. Actuator., 1996, 54A: 448
19 Liu T, Chen S G, Cheng S, et al. Corrosion behavior of super-hydrophobic surface on copper in seawater [J]. Electrochim. Acta, 2007, 52: 8003
doi: 10.1016/j.electacta.2007.06.072
20 Wiesinger R, Martina I, Kleber C, et al. Influence of relative humidity and ozone on atmospheric silver corrosion [J]. Corros. Sci., 2013, 77: 69
doi: 10.1016/j.corsci.2013.07.028
21 Kozlica D K, Kokalj A, Milošev I. Synergistic effect of 2-mercaptobenzimidazole and octylphosphonic acid as corrosion inhibitors for copper and aluminium-An electrochemical, XPS, FTIR and DFT study [J]. Corros. Sci., 2021, 182: 109082
doi: 10.1016/j.corsci.2020.109082
22 Hsu Y K, Chen Y C, Lin Y G. Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes [J]. J. Electroanal. Chem., 2012, 673: 43
doi: 10.1016/j.jelechem.2012.03.019
23 Huang J Y, Yang S. Investigation on anisotropic tribological properties of superhydrophobic/superlipophilic lead bronze surface textured by femtosecond laser [J]. Appl. Surf. Sci., 2022, 579: 152223
doi: 10.1016/j.apsusc.2021.152223
24 Pantano D, Neubauer N, Navratilova J, et al. Transformations of nanoenabled copper formulations govern release, antifungal effectiveness, and sustainability throughout the wood protection lifecycle [J]. Environ. Sci. Technol., 2018, 52: 1128
doi: 10.1021/acs.est.7b04130
25 Song P, Shen S, Li C C, et al. Insight in layer-by-layer assembly of cysteamine andL-cysteine on the copper surface by electrochemistry and Raman spectroscopy [J]. Appl. Surf. Sci., 2015, 328: 86
doi: 10.1016/j.apsusc.2014.12.015
26 Zhou H, Wang S L, Liu X F, et al. Hybrid corrosion inhibitor for anti-corrosion and protection of bronze relics [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 517
26 周 浩, 王胜利, 刘雪峰 等. 新型复合缓蚀剂对青铜文物的防腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 517
27 Shukla S K, Quraishi M A. The effects of pharmaceutically active compound doxycycline on the corrosion of mild steel in hydrochloric acid solution [J]. Corros. Sci., 2010, 52: 314
doi: 10.1016/j.corsci.2009.09.017
28 Venkatesh R P, Cho B J, Ramanathan S, et al. Electrochemical impedance spectroscopy (EIS) analysis of BTA removal by TMAH during post Cu CMP cleaning process [J]. J. Electrochem. Soc., 2012, 159: C447
doi: 10.1149/2.014211jes
29 Chidiebere M A, Oguzie E E, Liu L, et al. Corrosion inhibition of Q235 mild steel in 0.5 M H2SO4 solution by phytic acid and synergistic iodide additives [J]. Ind. Eng. Chem. Res., 2014, 53: 7670
doi: 10.1021/ie404382v
30 El Adnani Z, Mcharfi M, Sfaira M, et al. DFT theoretical study of 7-R-3methylquinoxalin-2(1H)-thiones (R=H; CH3; Cl) as corrosion inhibitors in hydrochloric acid [J]. Corros. Sci., 2013, 68: 223
doi: 10.1016/j.corsci.2012.11.020
31 Zhu Y Q, Sun Q Q, Wang Y, et al. Molecular dynamic simulation and experimental investigation on the synergistic mechanism and synergistic effect of oleic acid imidazoline and l-cysteine corrosion inhibitors [J]. Corros. Sci., 2021, 185: 109414
doi: 10.1016/j.corsci.2021.109414
32 Antonijević M M, Milić S M, Petrović M B. Films formed on copper surface in chloride media in the presence of azoles [J]. Corros. Sci., 2009, 51: 1228
doi: 10.1016/j.corsci.2009.03.026
[1] 刘明明, 杨小兵, 陈晓琪, 王政彬, 郑玉贵, 贺春林. 醋酸环境下金属材料腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 13-21.
[2] 马小泽, 孟令东, 曹祥康, 肖松, 董泽华. 大气污染物硫酸铵和氯化钠混合盐粒沉降对电路板铜大气腐蚀的加速机制[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[3] 刘毅超, 钟显康, 扈俊颖. 湿气环境中抗硫钢的元素硫腐蚀特征及腐蚀机理[J]. 中国腐蚀与防护学报, 2022, 42(3): 369-377.
[4] 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[5] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[6] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[7] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[8] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[9] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[10] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[11] 王希靖, 王博士, 杨超, 杨艳, 沈斌. 纯Ni母材及焊缝在熔融Na2SO4-K2SO4中热腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[12] 夏大海, 宋诗哲, 王吉会, 高志明, 胡文彬. 食品包装用镀锡薄钢板的腐蚀机理研究进展[J]. 中国腐蚀与防护学报, 2017, 37(6): 513-518.
[13] 朱紫晶,魏莉莎,陈振宇,邱于兵,郭兴蓬. 薄层液膜下空间电场对碳酸环己胺缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 216-220.
[14] 李琰,鲁金涛,杨珍,朱明,谷月峰. 烟气S含量对700 ℃超超临界锅炉候选合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[15] 孙冲, 王勇, 孙建波, 蒋涛, 赵卫民, 张彦春. 含杂质超临界CO2输送管线腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2015, 35(5): 379-385.