Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 704-712     CSTR: 32134.14.1005.4537.2023.142      DOI: 10.11902/1005.4537.2023.142
  中国腐蚀与防护学会杰出青年成就奖论文专栏 本期目录 | 过刊浏览 |
适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究
孟凡帝1(), 高浩东1, 刘莉1, 崔宇2, 刘叡1, 王福会1
1.东北大学材料科学与工程学院 沈阳 110819
2.中国科学院金属研究所师昌绪先进材料创新中心 沈阳 110016
Preparation and Anticorrosive Performance of a Basalt Organic Coating for Deep Sea Coupled Pressure-fluid Environment
MENG Fandi1(), GAO Haodong1, LIU Li1, CUI Yu2, LIU Rui1, WANG Fuhui1
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(9892 KB)   HTML
摘要: 

片状阻挡型无机填料可显著延长腐蚀介质在有机涂层中的扩散路径,被广泛应用于海洋防腐涂层领域。然而,在深海环境压力-流体耦合作用下,涂层中填料/树脂界面薄弱处往往因应力集中而导致涂层开裂。针对该问题,本工作选取玄武岩鳞片作为实验对象,根据其结构特性采用化学刻蚀方法在鳞片表面形成微结构;随后利用硅烷偶联剂改性玄武岩鳞片,降低了填料的表面能。通过以上处理可明显改善填料在有机树脂中的润湿性,增强了填料与树脂的界面结合能力。涂层失效行为结果表明,刻蚀-改性后玄武岩与树脂相容性好,偶联剂分子又参与涂层固化而进一步增加了涂层与填料间的界面结合力。实验进行240 h后,改性玄武岩环氧 (EMB/E) 涂层的阻抗模值 (|Z|0.01 Hz) 比未改性玄武岩 (B/E) 涂层的高一个数量级。玄武岩有机防腐涂层有效降低了压力-流体耦合环境对填料/涂层界面的劣化作用,在深海环境中可表现出更好的防护性能。

关键词 玄武岩鳞片有机涂层深海环境防腐性能    
Abstract

Sheet-like blocking inorganic fillers are widely used in the marine anti-corrosion coating field as their high aspect ratios significantly extend the diffusion path of the corrosive medium in organic coatings. However, under the coupling action of pressure-flow of seawater in the deep sea, the weak point at the filler/resin interface in the coating often cracks due to stress concentration. To address this issue, the purpose of this article is to study the feasibility of application of the modified basalt flakes, as a filler material, to enhance the adhesion of the filler/resin interface of organic coatings. Basalt flakes were firstly chemically etched to endow with peculiar surface morphology, which afterwards were modified with a silane coupling agent to reduce their surface energy. As a result, the wettability of the modified basalt flakes to the organic resin and the interfacial bonding between the modified basalt flakes and the resin are all significantly enhanced. The failure behavior of the coating under the coupling action of pressure-flow of seawater in a simulated deep sea condition showed that the etched-modified basalt filler had a good compatibility with the resin, and the surface coupling agent molecules could participate in the curing of the coating and further increase the interfacial bonding between the coating and the filler. After corrosion test in artificial seawater by couplingaction of pressure-flow conditions for 240 h, the impedance modulus (|Z|0.01 Hz) of the etched-modified basalt epoxy (EMB/E) coating was one order of magnitude higher than that of the unmodified basalt (B/E) coating. Therefore, the basalt organic coating effectively reduces the deterioration of the filler/coating interface under the coupling action of pressure-flow of seawater in simulated deep sea conditions. It can be expected to select the epoxy coating with modified basalt flakes as a candidate coating of better protective performance for engineering application in deep-sea environments.

Key wordsbasalt flake    organic coating    deep sea environment    anti-corrosion performance
收稿日期: 2023-05-07      32134.14.1005.4537.2023.142
ZTFLH:  TG174  
基金资助:国家自然科学基金(52271052);国家自然科学基金(U20A20233);中央高校基本科研业务费(N2102014)
通讯作者: 孟凡帝,E-mail: fandimeng@mail.neu.edu.cn,研究方向为海洋环境材料的腐蚀与防护   
Corresponding author: MENG Fandi, E-mail: fandimeng@mail.neu.edu.cn   
作者简介: 孟凡帝,男,1988年生,博士,副教授,2017 年毕业于中国科学院金属研究所,获博士学位。现就职于东北大学,副教授。孟 凡帝博士主要研究方向为海洋腐蚀与防护、有机功能防腐涂层、基于视觉分析的监检测技术等。详细阐明 了海洋极端环境下有机涂层的失效行为,基于涂层界面破坏机制建立了海洋防腐涂层设计准则;基于“界 面化学键合”概念从热力学、动力学角度揭示化学键合界面控制原理,通过控制制备工艺、化学键合几率等 全面建立了涂料界面调控制备技术,并成功应用于有机涂层的研发。从理论研究到技术应用开展了新型 高性能防腐-功能涂层的研制工作,综合提升了涂层各项主体性能指标。代表性成果包括深海环境下材料 失效机制、涂料化学键合界面调控技术、涂层的理论寿命预测等。相关涂料产品及技术成果已通过涂料企 业批量生产并在有关国防工程装备涂装应用。作为负责人主持国家自然科学基金面上、青年、航空科学基金、国防等项目10 余 项,以项目骨干身份参与国家重点研发计划等项目。在Corrosion Science、Progress in Organic Coatings 等领域内主流期刊发表 学术论文20 余篇,授权国家发明专利6 项。担任《中国腐蚀与防护学报》青年编委。2023 年获得中国腐蚀与防护学会杰出青年 成就奖。

引用本文:

孟凡帝, 高浩东, 刘莉, 崔宇, 刘叡, 王福会. 适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
MENG Fandi, GAO Haodong, LIU Li, CUI Yu, LIU Rui, WANG Fuhui. Preparation and Anticorrosive Performance of a Basalt Organic Coating for Deep Sea Coupled Pressure-fluid Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 704-712.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2023.142      或      https://www.jcscp.org/CN/Y2023/V43/I4/704

图1  玄武岩鳞片的刻蚀-改性实验原理图
图2  不同处理状态下玄武岩鳞片的红外光谱图
图3  不同处理状态下玄武岩鳞片的热重曲线图
图4  4种玄武岩鳞片的微观形貌
图5  4种玄武岩鳞片样品的水接触角和油接触角
图6  压力-流体耦合环境下B/E涂层及EMB/E涂层吸水率随时间变化曲线
图7  深海模拟耦合环境下B/E涂层/金属样品的电化学阻抗图及等效电路
图8  深海模拟耦合环境下EMB/E涂层/金属样品的电化学阻抗图
图9  压力-流体耦合环境浸泡120 h后B/E及EMB/E涂层的表面微观形貌
图10  深海压力-流体耦合环境下EMB/E涂层的防护机理示意图
1 Liu B, Fang Z G, Wang H B, et al. Effect of cross linking degree and adhesion force on the anti-corrosion performance of epoxy coatings under simulated deep sea environment [J]. Prog. Org. Coat., 2013, 76: 1814
2 Feng S Z, Li F Q, Li S J. An Introduction to Marine Science [M]. Beijing: Higher Education Press, 1999
2 冯士筰, 李凤岐, 李少菁. 海洋科学导论 [M]. 北京: 高等教育出版社, 1999
3 Chen Y F, Meng F D, Qu Y Y, et al. One-step synthesis of superhydrophobic polyaniline capsules and its effect on corrosion resistance of organic coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 345
3 陈异凡, 孟凡帝, 曲优异 等. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 345
doi: 10.11902/1005.4537.2022.089
4 Jia J H, Liu M, Luo C, et al. Corrosion and aging behavior of 2A97 Al-Li alloy with typical protective coatings in tropical marine atmosphere environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 143
4 贾静焕, 刘 明, 骆 晨 等. 2A97铝锂合金典型防护涂层热带海洋大气环境腐蚀老化行为 [J]. 中国腐蚀与防护学报, 2023, 43: 143
5 Meng F D, Liu L, Liu E H, et al. Synergistic effects of fluid flow and hydrostatic pressure on the degradation of epoxy coating in the simulated deep-sea environment [J]. Prog. Org. Coat., 2021, 159: 106449
6 Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
6 高浩东, 崔 宇, 刘 莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39
doi: 10.11902/1005.4537.2021.034
7 Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
7 曹京宜, 王智峤, 李 亮 等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139
doi: 10.11902/1005.4537.2019.224
8 Zhang M, Xu F, Lin D, et al. A smart anti-corrosion coating based on triple functional fillers [J]. Chem. Eng. J., 2022, 446: 137078
doi: 10.1016/j.cej.2022.137078
9 Meng F D, Liu L, Tian W L, et al. The influence of the chemically bonded interface between fillers and binder on the failure behaviour of an epoxy coating under marine alternating hydrostatic pressure [J]. Corros. Sci., 2015, 101: 139
doi: 10.1016/j.corsci.2015.09.011
10 Ghaffari M, Ehsani M, Khonakdar H A. Morphology, rheological and protective properties of epoxy/nano-glassflake systems [J]. Prog. Org. Coat., 2014, 77: 124
11 Zhou C L, Lu X, Xin Z, et al. Polybenzoxazine/SiO2 nanocomposite coatings for corrosion protection of mild steel [J]. Corros. Sci., 2014, 80: 269
doi: 10.1016/j.corsci.2013.11.042
12 Butt H J, Graf K, Kappl M. Physics and Chemistry of Interfaces [M]. Weinheim: Wiley-VCH, 2003
13 Khorasani M T, Mirzadeh H, Kermani Z. Wettability of porous polydimethylsiloxane surface: morphology study [J]. Appl. Surf. Sci., 2005, 242: 339
doi: 10.1016/j.apsusc.2004.08.035
14 Li Z, Liu L, Zheng H P, et al. Thermoresponsive PNIPAm on anti-corrosion antibacterial coating for controlled Ag ions release [J]. Compos. Commun., 2022, 35: 101327
doi: 10.1016/j.coco.2022.101327
15 Zheng H P, Liu L, Meng F D, et al. Etched basalt scales wrapped in self-assembled poly (urea-formaldehyde) for robust anticorrosive coatings [J]. Prog. Org. Coat., 2021, 153: 106160
16 Liu J H, Yu J, He M, et al. Influence of KH570 on the graft modifying Nano-silica [J]. Chin. J. Colloid Polym., 2010, 28: 19
16 柳建宏, 于 杰, 何 敏 等. KH570用量对纳米SiO2接枝改性的影响 [J]. 胶体与聚合物, 2010, 28: 19
17 Zhang Y X, Zhao M, Zhang J X, et al. Excellent corrosion protection performance of epoxy composite coatings filled with silane functionalized silicon nitride [J]. J. Polym. Res., 2018, 25: 130
doi: 10.1007/s10965-018-1518-2
18 Li B B, Liu X Y, Zhang X Y, et al. Oil-absorbent polyurethane sponge coated with KH-570-modified graphene [J]. J. Appl. Polym. Sci., 2015, 132: 41821
19 Cui T, Verberne P, Meguid S A. Characterization and atomistic modeling of the effect of water absorption on the mechanical properties of thermoset polymers [J]. Acta Mech., 2018, 299: 745
20 Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
20 曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002
21 Shi C, Shao Y W, Wang Y Q, et al. Influence of submicro-sheet zinc phosphate modified by urea-formaldehyde on the corrosion protection of epoxy coating [J]. Surf. Interfaces, 2020, 18: 100403
22 Zhang Y J, Shao Y W, Liu X L, et al. A study on corrosion protection of different polyaniline coatings for mild steel [J]. Prog. Org. Coat., 2017, 111: 240
[1] 邹文杰, 丁立, 张雪姣, 陈均. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[2] 段体岗, 李祯, 彭文山, 张彭辉, 丁康康, 郭为民, 侯健, 马力, 许立坤. 深海环境5A06铝合金腐蚀行为与表面特性[J]. 中国腐蚀与防护学报, 2023, 43(2): 352-358.
[3] 陈异凡, 孟凡帝, 曲优异, 方芷晴, 刘莉, 王福会. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 345-351.
[4] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[5] 栾浩, 孟凡帝, 刘莉, 崔宇, 刘叡, 郑宏鹏, 王福会. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[6] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[7] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[8] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[9] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[10] 彭文山,侯健,丁康康,郭为民,邱日,许立坤. 深海环境中304不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[11] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[12] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[13] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[14] 蔡光义,王浩伟,赵苇杭,董泽华. 添加纳米CeO2对聚氨酯涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[15] 曹攀, 周婷婷, 白秀琴, 袁成清. 深海环境中的材料腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2015, 35(1): 12-20.