Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 677-682     CSTR: 32134.14.1005.4537.2022.286      DOI: 10.11902/1005.4537.2022.286
  研究报告 本期目录 | 过刊浏览 |
Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为
王洪伦1, 杨华1, 蔡辉1, 李博文2()
1.西昌卫星发射中心 西昌 615000
2.中国科学院金属研究所 沈阳 110016
Corrosion Behavior of Q235 Steel by Outdoor Exposure and under Shelter in Atmosphere of Hainan Coastal
WANG Honglun1, YANG Hua1, CAI Hui1, LI Bowen2()
1.Xichang Satellite Launch Center, Xichang 615000, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(5380 KB)   HTML
摘要: 

采用宏观形貌、截面微观形貌、失重分析、X射线衍射 (XRD)、电化学测试方法,研究了Q235钢在海南濒海大气气候下同区域的户外暴晒和棚下环境的腐蚀行为。研究表明:在户外暴晒环境和棚下环境Q235钢表面腐蚀产物随着时间增加颜色逐渐变深,棚下环境变深速度较户外暴晒环境快;腐蚀产物逐渐由FeOOH向Fe2O3和Fe3O4转变,户外暴晒环境转变趋势慢于棚下环境,导致腐蚀产物虽厚但多裂纹和孔隙,对基体保护性降低,腐蚀速率增大;失重分析显示户外暴晒环境腐蚀速率远高于棚下环境,年均腐蚀失重率约为棚下环境的两倍;电化学测试显示户外暴晒环境下的Rp小于棚下环境的,说明户外暴晒环境材料腐蚀倾向大于棚下环境的。分析主要原因是户外暴晒环境空气湿度相对较低,日照充足,盐浓度较大,在样品表面残留较高的盐浓度,导致腐蚀加剧。

关键词 Q235钢户外暴晒环境棚下环境腐蚀行为    
Abstract

The corrosion behavior of Q235 steel was studied by outdoor exposure and under the shelter of an awning respectively in the same atmosphere at one test site located at the coastal of Hainan island in the South China Sea by means of mass loss method, electrochemical test methods, macro-morphology, cross-sectional micro-morphology, and X-ray diffractometer (XRD) etc. The results showed that the color of corrosion products on the surface of Q235 steel by outdoor and under the shelter all gradually darkens with time, and however the darkening rate for the steel under the shelter was faster than that by outdoor exposure. The corrosion products gradually changed from FeOOH to Fe2O3 and Fe3O4.The transformation trend of the steel by outdoor exposure was slower than that under the shelter. As a result, a thick corrosion product with many cracks and pores may emerge, therefore its protectiveness for the substrate might be deteriorated, so that the corrosion rate of the steel was rose. The mass loss analysis showed that the corrosion rate for the steel by outdoor exposure was much higher than that under the shelter, and the annual average mass loss rate of the former was about 2 times of that the later. The results of electrochemical test show that the Rp of the steel by outdoor exposure is less than that under the shelter, which indicates that the corrosion tendency of the steel by outdoor exposure is greater than that under the shelter. The main reason is that the air humidity is relatively low, the sunlight is sufficient, the salt concentration is higher, and the residual salt concentration on the surface of the steel is also higher by the outdoor exposure, which leads to the deterioration of the corrosion condition.

Key wordsQ235 steel    outdoor exposure environment    shed environment    corrosion behavior
收稿日期: 2022-09-15      32134.14.1005.4537.2022.286
ZTFLH:  TG172.3  
通讯作者: 李博文,E-mail:bwli@imr.ac.cn,研究方向为腐蚀监检测技术研究与应用
Corresponding author: LI Bowen, E-mail: bwli@imr.ac.cn
作者简介: 王洪伦,男,1981年生,博士,高级工程师

引用本文:

王洪伦, 杨华, 蔡辉, 李博文. Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
WANG Honglun, YANG Hua, CAI Hui, LI Bowen. Corrosion Behavior of Q235 Steel by Outdoor Exposure and under Shelter in Atmosphere of Hainan Coastal. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 677-682.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.286      或      https://www.jcscp.org/CN/Y2023/V43/I3/677

图1  户外暴晒环境下4个周期样品的宏观形貌
图2  Q235钢在同区域不同环境下12个月后截面腐蚀形貌
Sample NumberEnvironment CircleAverage masslessness mgCorrosion depth D / μm
311Outdoors/Circle 13.513±0.35918.766±1.920
312Outdoors/Circle 26.478±0.23334.601±1.244
313Outdoors/Circle 311.425±0.10961.022±0.581
314Outdoors/Circle 419.887±0.223106.209±1.193
321Shed/Circle 12.481±0.26813.253±1.433
322Shed/Circle 24.129±0.08522.052±0.452
323Shed/Circle 35.265±0.27728.123±1.478
324Shed/Circle 411.163±0.5759.626±3.043
表1  Q235钢各实验组平均失重及腐蚀深度
图3  Q235钢户外环境与棚下环境腐蚀失重及腐蚀深度变化
图4  Q235钢两种环境下各周期腐蚀产物成分
图5  两种典型环境下Q235钢的Nyquist图及拟合等效电路
图6  Q235钢在两种环境中的Rp
1 Hou B R. The Cost of Corrosion in China [M]. Beijing: Science Press, 2017
1 侯保荣. 中国腐蚀成本 [M]. 北京: 科学出版社, 2017
2 Cao C N. Natural Environmental Corrosion of Chinese Materials [M]. Beijing: Chemical Industry Press, 2005
2 曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005
3 Tian Q Q, Hai C, Wang Z G, et al. Study on corrosion behavior of Q235 carbon steel in typical atmospheric pollution environment in Leshan, Sichuan province [J]. J. Southwest Minzu Univ. (Nat. Sci. Ed.), 2020, 46: 478
3 田倩倩, 海 潮, 王志高 等. Q235碳钢在四川典型大气污染环境中的腐蚀行为研究 [J]. 西南民族大学学报(自然科学版), 2020, 46: 478
4 Gao Y, Huang Y H, Zheng Z J, et al. Atmospheric corrosion behavior of Q235 steel exposed on transmission tower sites of Guangdong province [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2018, 46(7): 39
4 高 岩, 黄殷辉, 郑志军 等. Q235钢在广东省输电杆塔现场的大气腐蚀行为 [J]. 华南理工大学学报(自然科学版), 2018, 46(7): 39
5 Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51: 997
doi: 10.1016/j.corsci.2009.02.009
6 Mahmoud M G, Wang R, Kato M, et al. Influence of ultraviolet light irradiation on corrosion behavior of weathering steel with and without TiO2-coating in 3 mass% NaCl solution [J]. Scr. Mater., 2005, 53: 1303
doi: 10.1016/j.scriptamat.2005.07.039
7 Yu G C, Wang Z Y, Chen H C. Effect of weather factors for Q235 steel corrosion in Hainan [J]. Corros. Prot., 2000, 21: 531
7 于国才, 王振尧, 陈鸿川. 海南地区气象因素对Q235钢腐蚀的影响 [J]. 腐蚀与防护, 2000, 21: 531
8 Song Z B, Wang Z C, Wang J G, et al. Atmospheric corrosion behavior of Q235 steel in northern Hebei region [J]. Mater. Mechan. Eng., 2021, 45(6): 46
8 宋子博, 王智春, 王建国 等. Q235钢在冀北地区的大气腐蚀行为 [J]. 机械工程材料, 2021, 45(6): 46
doi: 10.11973/jxgccl202106008
9 Liu Y W. Corrosion behavior and mechanism of carbon steel at Nansha lslands marine atmospheric environment [D]. Hefei: University of Science and Technology of China, 2020
9 刘雨薇. 碳钢在南沙大气环境中的腐蚀行为与机理研究 [D]. 合肥: 中国科学技术大学, 2020
10 Wu G, Xu S, Zhang N, et al. Corrosion perforation causes of bottom plate for Q235B steel crude oil storage tank [J]. Phys. Test. Chem. Anal. (Part A Phys. Test.), 2021, 57(2): 57
10 武 刚, 徐 帅, 张 楠 等. Q235B钢原油储罐底板腐蚀穿孔原因 [J]. 理化检验-物理分册, 2021, 57(2): 57
11 Antunes R A, Costa I, De Faria D L A. Characterization of corrosion products formed on steels in the first months of atmospheric exposure [J]. Mater. Res., 2003, 6: 403
doi: 10.1590/S1516-14392003000300015
12 Wang C, Cao G W, Pan C, et al. Atmospheric corrosion of carbon steel and weathering steel in three environments [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 39
12 汪 川, 曹公旺, 潘 辰 等. 碳钢、耐候钢在3种典型大气环境中的腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2016, 36: 39
13 Chen X X, Guan L, Li W J, et al. Kinetic behavior of Q235 steel at initial stage of corrosion in simulated atmosphere [J]. Corros. Prot., 2021, 42(5): 18
13 陈心欣, 关 蕾, 李万江 等. 模拟大气中Q235钢的早期腐蚀动力学行为 [J]. 腐蚀与防护, 2021, 42(5): 18
14 Xue F, Liu L Y, Tan L. Aerobic corrosion process of Q235 steel in NaHCO3 solutions [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 771
14 薛 芳, 刘两雨, 谭 龙. Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为 [J]. 中国腐蚀与防护学报, 2022, 42: 771
15 Wang Z G, Hai C, Jiang J, et al. Corrosion behavior of Q235 steels in atmosphere at Deyang district for one Year [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 871
15 王志高, 海 潮, 姜 杰 等. Q235钢在德阳大气环境中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 871
doi: 10.11902/1005.4537.2020.180
16 Corvo F, Perez T, Dzib L R, et al. Outdoor-indoor corrosion of metals in tropical coastal atmospheres [J]. Corros. Sci., 2008, 50: 220
doi: 10.1016/j.corsci.2007.06.011
17 Guerra J C, Castañeda A, Corvo F, alet, Atmospheric corrosion of low carbon steel in a coastal zone of Ecuador : Anomalous behavior of chloride deposition versus distance from the sea [J]. Mater. Corros., 2019, 70: 444
doi: 10.1002/maco.201810442
18 Wan Y, Song F L, Li L J. Corrosion characteristics of carbon steel in simulated marine atmospheres [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 851
18 万 晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2022, 42: 851
19 Yang J, Wang Z B, Qiao Y X, et al. Synergistic effects of deposits and sulfate reducing bacteria on the corrosion of carbon steel [J]. Corros. Sci., 2022, 199: 110210
doi: 10.1016/j.corsci.2022.110210
[1] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[2] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[3] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[4] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[5] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[6] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[7] 张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[8] 万红霞, 刘重麟, 王子安, 刘茹, 陈长风. P110S油套管在微含硫环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[9] 张佳欢, 崔中雨, 范林, 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[10] 赵伊, 曹京宜, 方志刚, 冯亚菲, 韩卓, 孟凡帝, 王昭东, 王福会. A517Gr.Q海工钢在模拟海洋飞溅区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 921-928.
[11] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[12] 薛芳, 刘两雨, 谭龙. Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[13] 梁志远, 徐一鸣, 王硕, 李玉峰, 赵钦新. 高等级合金CO2环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.
[14] 杨永, 张庆保, 朱万成, 罗艳龙. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[15] 张克乾, 张华, 李扬, 洪业, 贺诚. 焦耳陶瓷电熔炉中电极材料腐蚀问题的研究现状[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.