Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 921-928          DOI: 10.11902/1005.4537.2021.308
  研究报告 本期目录 | 过刊浏览 |
A517Gr.Q海工钢在模拟海洋飞溅区的腐蚀行为研究
赵伊1, 曹京宜1, 方志刚1, 冯亚菲1, 韩卓2, 孟凡帝2(), 王昭东3, 王福会2
1.中国人民解放军92228部队 北京 100072
2.沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
3.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
Corrosion Behavior of A517Gr.Q Marine Steel in Simulated Corrosive Condition of Marine Splashing Zone
ZHAO Yi1, CAO Jingyi1, FANG Zhigang1, FENG Yafei1, HAN Zhuo2, MENG Fandi2(), WANG Zhaodong3, WANG Fuhui2
1. Unit 92228, People's Liberation Army, Beijing 100072, China
2. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
3. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

赵伊, 曹京宜, 方志刚, 冯亚菲, 韩卓, 孟凡帝, 王昭东, 王福会. A517Gr.Q海工钢在模拟海洋飞溅区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 921-928.
Yi ZHAO, Jingyi CAO, Zhigang FANG, Yafei FENG, Zhuo HAN, Fandi MENG, Zhaodong WANG, Fuhui WANG. Corrosion Behavior of A517Gr.Q Marine Steel in Simulated Corrosive Condition of Marine Splashing Zone[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 921-928.

全文: PDF(13226 KB)   HTML
摘要: 

利用失重法和SEM、EDS、XRD、FT-IR等分析技术研究了A517Gr.Q海工钢在模拟海洋飞溅区干湿交替环境下的腐蚀行为以及环境湿度的影响。结果表明:在飞溅区干湿交替环境下,A517钢的腐蚀较为严重,在敞口和半封闭两种模拟环境 (实验箱平均环境湿度分别为 (62±5)%、(83±5)%) 下腐蚀失重均随着时间的延长而增大,平均腐蚀速度都是先增大后趋于平稳。腐蚀产物均是由γ-FeOOH、β-FeOOH、α-FeOOH和Fe3O4组成。在62%RH环境下电解液膜的停留时间短,干/湿状态变化程度更加彻底,样品表面生成了更多的腐蚀产物,同时生成了较多具有高阴极氧化活性的β-FeOOH,锈层疏松多孔,表现为不均匀的全面腐蚀,材料的腐蚀程度较为严重。而在83%RH环境下,产物膜中生成了更多致密均匀的Fe3O4,对侵蚀性Cl-具有一定的阻挡作用。

关键词 海工钢模拟飞溅区腐蚀行为    
Abstract

The corrosion behavior of A517Gr. Q steel was studied by mass loss method, SEM, EDS, XRD, and FT-IR in a cyclic wet/dry testing chamber, which was specially designed to simulate the corrosion condition of marine splash zone i.e. cyclically wetting in 3.5%NaCl solution and drying in atmospheres with humidity of either (62±5)% or (83±5)%. The results show that A517 steel is suffered from serious corrosion in the simulated environments of marine splash zone. The corrosion mass loss increases with time, while the average corrosion rate increases first and then stabilizes. The corrosion products are all composed of γ-FeOOH, β-FeOOH, α-FeOOH and Fe3O4. In the condition when the chamber atmosphere with humidity of 62%RH, the electrolyte film formed on the steel surface after immersion can be maintained only for a shorter period, as a result, the steel surface undergoes distinct dry and wet changes, and the formed rust scale is porous with obviously high amount of β-FeOOH, which is of high cathode oxidation activity, thus the steel presents much severe non-uniform corrosion. On the other hand, when the chamber atmosphere with humidity of 83%RH, the corrosion products scale is much dense and uniform with higher amount of Fe3O4, therefore, exhibits a blocking effect on the attack of aggressive Cl- to certain extent.

Key wordsmarine steel    simulated splashing zone    corrosion behavior
收稿日期: 2021-11-03     
ZTFLH:  TG174  
基金资助:国家重点研发计划(2019YFC0312100)
作者简介: 赵伊,女,1988年生,工程师
图1  A517Gr.Q低合金钢的金相组织
图2  模拟海洋飞溅区及全浸区腐蚀实验装置示意图
图3  A517Gr.Q钢在暴露不同时间后的腐蚀失重和腐蚀速率
图4  A517Gr.Q钢在两种湿度条件下腐蚀不同时间后的宏观形貌
图5  A517钢Gr.Q去除腐蚀产物膜后的表面形貌
图6  A517Gr.Q钢在两种湿度条件下腐蚀不同时间后的微观形貌
图7  A517Gr.Q钢在两种湿度条件下腐蚀不同时间后的截面微观形貌
图8  A517Gr.Q钢在两种湿度条件下腐蚀不同时间后锈层的XRD及FTIR谱
HumidityPeriodComposition
62%RH7 dγ-FeOOH, α-FeOOH less Fe3O4 more β-FeOOH
14 dγ-FeOOH, α-FeOOH, Fe3O4, β-FeOOH
28 dγ-FeOOH, α-FeOOH、Fe3O4, β-FeOOH
56 dγ-FeOOH, α-FeOOH, Fe3O4
83%RH7 dγ-FeOOH, Fe3O4, β-FeOOH
14 dγ-FeOOH, α-FeOOH, Fe3O4, β-FeOOH
28 dγ-FeOOH, α-FeOOH, Fe3O4, β-FeOOH
56 dγ-FeOOH, α-FeOOH、Fe3O4, β-FeOOH
表1  A517Gr.Q钢在两种湿度条件下腐蚀产物的成分
[1] Liu Z Y, Tang S, Chen J, et al. Latest progress on development and production of steels for offshore platform and their development tendency [J]. Angang Technol., 2015, (1): 1
[1] (刘振宇, 唐帅, 陈俊 等. 海洋平台用钢的研发生产现状与发展趋势 [J]. 鞍钢技术, 2015, (1): 1)
[2] Wang J, Meng J, Tang X, et al. Assessment of corrosion behavior of steel in deep ocean [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 1
[2] (王佳, 孟洁, 唐晓 等. 深海环境钢材腐蚀行为评价技术 [J]. 中国腐蚀与防护学报, 2007, 27: 1)
[3] Yang Y G, Cui Z Y, Chen J, et al. Influence of hydrostatic pressure on the pitting behavior of Fe-20Cr alloy [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 415
[3] (杨延格, 崔中雨, 陈杰 等. 静水压力对Fe-20合金点蚀行为的影响 [J]. 中国腐蚀与防护学报, 2009, 29: 415)
[4] Zheng Z B, Zheng Y G, Zhou X, et al. Determination of the critical flow velocities for erosion-corrosion of passive materials under impingement by NaCl solution containing sand [J]. Corros. Sci., 2014, 88: 187
doi: 10.1016/j.corsci.2014.07.043
[5] Zhang P H, Wang W, Guo W M, et al. Corrosion behavior of long-size marine steel samples in tropical sea area [J]. Equip. Environ. Eng., 2017, 14(2): 77
[5] (张彭辉, 王炜, 郭为民 等. 海工钢在热带海域长尺试验腐蚀行为研究 [J]. 装备环境工程, 2017, 14(2): 77)
[6] Guo W M, Sun M X, Qiu R, et al. Research progress on corrosion and aging of materials in deep-sea environment [J]. Corros. Sci. Prot. Technol., 2017, 29: 313
[6] (郭为民, 孙明先, 邱日 等. 材料深海自然环境腐蚀实验研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 313)
[7] Ma S D, Liu X, Wang Z D, et al. Characterization of seawater corrosion interface of zinc coated steel plate in Zhong-gang harbor [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 585
[7] (马士德, 刘欣, 王在东 等. 普碳钢表面锌防护层在青岛中港海水中耐蚀与防污损性能对比研究 [J]. 中国腐蚀与防护学报, 2021, 41: 585)
[8] Wan J J. Research on the corrosion behaviors and mechanism of A517Gr.Q steel in simulated seawater[D]. Xi'an: Xi'an University of Technology, 2017
[8] (万金剑. 高强钢A517Gr. Q在模拟海水中的腐蚀行为及机理研究[D]. 西安: 西安理工大学, 2017)
[9] Zhai S X, Yang X Y, Yang J L, et al. Corrosion properties of Quenching-Partitioning-Tempering steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 398
[9] (翟思昕, 杨幸运, 杨继兰 等. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 398)
[10] Zhang X, Xu X Q, Ma F. Research on high-strength steel used for offshore engineering [J]. Pet. Tubular Goods Instrum., 2015, 1(1): 9
[10] (张翔, 徐秀清, 马飞. 国内外海洋工程用高强钢研究进展 [J]. 石油仪器, 2015, 1(1): 9)
[11] Liu H Y, Zhang X Q, Teng Y X, et al. Corrosion resistance and antifouling performance of copper-bearing low-carbon steel in marine environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 679
[11] (刘宏宇, 张喜庆, 滕莹雪 等. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 679)
[12] Wang L, Dong C F, Man C, et al. Effect of microstructure on corrosion behavior of high strength martensite steel-A literature review [J]. Int. J. Min. Met. Mater., 2021, 28: 754
doi: 10.1007/s12613-020-2242-6
[13] Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J]. Corros. Sci., 1974, 14: 279
doi: 10.1016/S0010-938X(74)80037-5
[14] Raman A, Kuban B, Razvan A. The application of infrared spectroscopy to the study of atmospheric rust systems—I. Standard spectra and illustrative applications to identify rust phases in natural atmospheric corrosion products [J]. Corros. Sci., 1991, 32: 1295
doi: 10.1016/0010-938X(91)90049-U
[15] Rincón A, de Rincón O T, Haces C, et al. Evaluation of steel corrosion products in tropical climates [J]. Corrosion, 1997, 53: 835
doi: 10.5006/1.3290268
[16] Castaño J G, Botero C A, Restrepo A H, et al. Atmospheric corrosion of carbon steel in Colombia [J]. Corros. Sci., 2010, 52: 216
doi: 10.1016/j.corsci.2009.09.006
[17] Xiao H G. Mechanism of formation and evolution process of akaganeite on Q235 during marine atmospheric corrosion [D]. Shenyang: University of Chinese Academy of Sciences, 2017
[17] (肖海刚. 海洋大气腐蚀中β-FeOOH在Q235表面形成及演化机制研究 [D]. 沈阳: 中国科学院大学, 2017)
[1] 熊伊铭, 梅婉, 王泽华, 余瑞, 徐诗瑶, 吴磊, 张欣. 磁场作用下5083铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[2] 宋东东, 万红霞, 徐栋, 周倩. 轧制对ZM5镁合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[3] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[4] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[5] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[6] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[7] 王洪伦, 杨华, 蔡辉, 李博文. Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[8] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[9] 万红霞, 刘重麟, 王子安, 刘茹, 陈长风. P110S油套管在微含硫环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[10] 张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[11] 张佳欢, 崔中雨, 范林, 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[12] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[13] 梁志远, 徐一鸣, 王硕, 李玉峰, 赵钦新. 高等级合金CO2环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.
[14] 杨永, 张庆保, 朱万成, 罗艳龙. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[15] 张克乾, 张华, 李扬, 洪业, 贺诚. 焦耳陶瓷电熔炉中电极材料腐蚀问题的研究现状[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.