|
|
管线钢氢渗透行为的研究进展 |
姚婵1,2, 陈健1( ), 明洪亮1, 王俭秋1 |
1.中国科学院金属研究所 沈阳 110016 2.北京科技大学 国家材料服役安全科学中心 北京 100083 |
|
Research Progress on Hydrogen Permeability Behavior of Pipeline Steel |
YAO Chan1,2, CHEN Jian1( ), MING Hongliang1, WANG Jianqiu1 |
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.Nation Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
姚婵, 陈健, 明洪亮, 王俭秋. 管线钢氢渗透行为的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 209-219.
Chan YAO,
Jian CHEN,
Hongliang MING,
Jianqiu WANG.
Research Progress on Hydrogen Permeability Behavior of Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 209-219.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.140
或
https://www.jcscp.org/CN/Y2023/V43/I2/209
|
[1] |
Shang J, Lu Y H, Zheng J Y, et al. Research status-in-situ and key challenges in pipeline transportation of hydrogen-natural gas mixtures [J]. Chem. Ind. Eng. Prog., 2021, 40: 5499
|
[1] |
(尚娟, 鲁仰辉, 郑津洋 等. 掺氢天然气管道输送研究进展和挑战 [J]. 化工进展, 2021, 40: 5499)
|
[2] |
Jin X, Zhuang Y X, Wang H, et al. Feasibility analysis research on abandoning wind and solar energy with hydrogen energy storage technology [J]. Electrotech. Electr., 2019, (4): 63
|
[2] |
(金雪, 庄雨轩, 王辉 等. 氢储能解决弃风弃光问题的可行性分析研究 [J]. 电工电气, 2019, (4): 63)
|
[3] |
Witkowski A, Rusin A, Majkut M, et al. Analysis of compression and transport of the methane/hydrogen mixture in existing natural gas pipelines [J]. Int. J. Pres. Vessels Pip., 2018, 166: 24
|
[4] |
Pluvinage G, Capelle J, Meliani M H. Pipe networks transporting hydrogen pure or blended with natural gas, design and maintenance [J]. Eng. Fail. Anal., 2019, 106: 104164
doi: 10.1016/j.engfailanal.2019.104164
|
[5] |
Wu X, Zhang H F, Yang M, et al. From the perspective of new technology of blending hydrogen into natural gas pipelines transmission: mechanism, experimental study, and suggestions for further work of hydrogen embrittlement in high-strength pipeline steels [J]. Int. J. Hydrogen Energy, 2022, 47: 8071
doi: 10.1016/j.ijhydene.2021.12.108
|
[6] |
Chen S Y, Long H Y, Li T L, et al. Discussion on blending hydrogen into natural gas pipeline networks [J]. Nat. Gas Oil, 2020, 38(6): 22
|
[6] |
(陈石义, 龙海洋, 李天雷 等. 天然气管道掺氢探讨 [J]. 天然气与石油, 2020, 38(6): 22)
|
[7] |
Barrett S. McPhy energy role in french power-to-gas GRHYD programme [J]. Fuel Cells Bull., 2014, 2014: 9
|
[8] |
Briottet L, Moro I, Lemoine P. Quantifying the hydrogen embrittlement of pipeline steels for safety considerations [J]. Int. J. Hydrogen Energy, 2012, 37: 17616
doi: 10.1016/j.ijhydene.2012.05.143
|
[9] |
Nanninga N E, Levy Y S, Drexler E S, et al. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments [J]. Corros. Sci., 2012, 59: 1
doi: 10.1016/j.corsci.2012.01.028
|
[10] |
Zhou D J, Li T T, Huang D W, et al. The experiment study to assess the impact of hydrogen blended natural gas on the tensile properties and damage mechanism of X80 pipeline steel [J]. Int. J. Hydrogen Energy, 2021, 46: 7402
doi: 10.1016/j.ijhydene.2020.11.267
|
[11] |
Xie P, Wu Y, Li C J, et al. Research progress on pipeline transportation technology of hydrogen-mixed natural gas [J]. Oil Gas Storage Transport., 2021, 40: 361
|
[11] |
(谢萍, 伍奕, 李长俊 等. 混氢天然气管道输送技术研究进展 [J]. 油气储运, 2021, 40: 361)
|
[12] |
Huang M, Wu Y, Wen X Z, et al. Feasibility analysis of hydrogen transport in natural gas pipeline [J]. Gas Heat, 2013, 33(4): 39
|
[12] |
(黄明, 吴勇, 文习之 等. 利用天然气管道掺混输送氢气的可行性分析 [J]. 煤气与热力, 2013, 33(4): 39)
|
[13] |
Huang F, Qu Y M, Deng Z J, et al. Pitting electrochemical behaviors of different microstructure X80 steel in high pH soil simulative solution [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 29
|
[13] |
(黄峰, 曲炎淼, 邓照军 等. 不同组织X80钢在高pH土壤模拟溶液中的点蚀电化学行为 [J]. 中国腐蚀与防护学报, 2010, 30: 29)
|
[14] |
Liu Z Y, Zhai G L, Du C W, et al. SCC of X70 pipeline steel in Yingtan acid soil environment [J]. J. Sichuan Univ. (Eng. Sci. Ed.), 2008, 40(2): 76
|
[14] |
(刘智勇, 翟国丽, 杜翠薇 等. X70钢在鹰潭酸性土壤中的应力腐蚀行为 [J]. 四川大学学报 (工程科学版), 2008, 40(2): 76)
|
[15] |
Liu Z Y, Du C W, Li X G, et al. Characteristic of X70 pipeline steel in the Ku'erle soil environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 46
|
[15] |
(刘智勇, 杜翠薇, 李晓刚 等. X70钢在库尔勒土壤环境中的腐蚀特征 [J]. 中国腐蚀与防护学报, 2010, 30: 46)
|
[16] |
Li X D, Liu J H, Sun J B, et al. Effect of microstructural aspects in the heat-affected zone of high strength pipeline steels on the stress corrosion cracking mechanism: part I. In acidic soil environment [J]. Corros. Sci., 2019, 160: 108167
doi: 10.1016/j.corsci.2019.108167
|
[17] |
Liao Q Y, Chen Z G. The safety research on blending hydrogen into natural gas pipeline [J]. Urban Gas, 2021, (4): 19
|
[17] |
(廖倩玉, 陈志光. 天然气管道掺氢输送安全问题研究现状 [J]. 城市燃气, 2021, (4): 19)
|
[18] |
Li S Y, Hu R S, Zhao W M, et al. Hydrogen adsorption and diffusion on steel surface [J]. Surf. Technol., 2020, 49(8): 15
|
[18] |
(李守英, 胡瑞松, 赵卫民 等. 氢在钢铁表面吸附以及扩散的研究现状 [J]. 表面技术, 2020, 49(8): 15)
|
[19] |
Feng H, Chi Q, Ji L K, et al. Research and development of hydrogen embrittlement of pipeline steel [J]. Corros. Sci. Prot. Technol., 2017, 29: 318
|
[19] |
(封辉, 池强, 吉玲康 等. 管线钢氢脆研究现状及进展 [J]. 腐蚀科学与防护技术, 2017, 29: 318)
|
[20] |
Qi Y M, Luo H Y, Zheng S Q, et al. Comparison of tensile and impact behavior of carbon steel in H2S environments [J]. Mater. Des., 2014, 58: 234
doi: 10.1016/j.matdes.2014.01.065
|
[21] |
Tiwari G P, Bose A, Chakravartty J K, et al. A study of internal hydrogen embrittlement of steels [J]. Mater. Sci. Eng., 2000, 286A: 269
|
[22] |
Xie D G, Li M, Shan Z W. Review on hydrogen-microstructure interaction in metals [J]. Mater. China, 2018, 37: 215
|
[22] |
(解德刚, 李蒙, 单智伟. 氢与金属的微观交互作用研究进展 [J]. 中国材料进展, 2018, 37: 215)
|
[23] |
Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 7
|
[23] |
(褚武扬, 乔利杰, 李金许 等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 7)
|
[24] |
Devanathan M A V, Stachurski Z. The adsorption and diffusion of electrolytic hydrogen in palladium [J]. Proc. Roy. Soc., 1962, 270A: 90
|
[25] |
ZHAO D P. Study on hydrogen permeation and hydrogen embrittlement of X80 pipeline steel and its HAZ caused by cathodic protection [D]: Qingdao: China University of Petroleum (East China), 2014
|
[25] |
(赵大朋. 阴极保护下X80钢及焊接影响区的氢渗透行为和氢脆敏感性研究 [D]. 青岛: 中国石油大学(华东), 2014)
|
[26] |
Thomas A, Szpunar J A. Hydrogen diffusion and trapping in X70 pipeline steel [J]. Int. J. Hydrogen Energy, 2020, 45: 2390
doi: 10.1016/j.ijhydene.2019.11.096
|
[27] |
Ichitani K, Kuramoto S, Kanno M. Quantitative evaluation of detection efficiency of the hydrogen microprint technique applied to steel [J]. Corros. Sci., 2003, 45: 1227
doi: 10.1016/S0010-938X(02)00218-4
|
[28] |
Peng X H. Research on hydrogen induced cracking behaviors of different microstructure pipeline steels [D]. Wuhan: Wuhan University of Science and Technology, 2013
|
[28] |
(彭先华. 不同微观结构管线钢氢致开裂 (HIC) 行为研究 [D]. 武汉: 武汉科技大学, 2013)
|
[29] |
Choo W Y. Effect of cathodic charging current density on the apparent hydrogen diffusivity through pure iron [J]. J. Mater. Sci., 1984, 19: 2633
doi: 10.1007/BF00550819
|
[30] |
Archer M D, Grant N C. Achievable boundary conditions in potentiostatic and galvanostatic hydrogen permeation through palladium and nickel foils [J]. Proc. Roy. Soc., 1984, 395A: 165
|
[31] |
Dong C F, Xiao K, Liu Z Y, et al. Hydrogen induced cracking of X80 pipeline steel [J]. Int. J. Miner. Metall. Mater., 2010, 17: 579
doi: 10.1007/s12613-010-0360-2
|
[32] |
Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking [J]. Int. J. Hydrogen Energy, 2009, 34: 9879
doi: 10.1016/j.ijhydene.2009.09.090
|
[33] |
Han Y D, Jing H Y, Xu L Y. Welding heat input effect on the hydrogen permeation in the X80 steel welded joints [J]. Mater. Chem. Phys., 2012, 132: 216
doi: 10.1016/j.matchemphys.2011.11.036
|
[34] |
Zhang T M, Zhao W M, Li T T, et al. Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation [J]. Corros. Sci., 2018, 131: 104
doi: 10.1016/j.corsci.2017.11.013
|
[35] |
Zhang T M, Zhao W M, Deng Q S, et al. Effect of microstructure inhomogeneity on hydrogen embrittlement susceptibility of X80 welding HAZ under pressurized gaseous hydrogen [J]. Int. J. Hydrogen Energy, 2017, 42: 25102
doi: 10.1016/j.ijhydene.2017.08.081
|
[36] |
Zhao W M, Yang M, Zhang T M, et al. Study on hydrogen enrichment in X80 steel spiral welded pipe [J]. Corros. Sci., 2018, 133: 251
doi: 10.1016/j.corsci.2018.01.011
|
[37] |
Zhao W M, Zhang T M, Zhao Y J, et al. Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment [J]. Corros. Sci., 2016, 111: 84
doi: 10.1016/j.corsci.2016.04.029
|
[38] |
Wu R H. Study on hydrogen induced cracking sensitivity of X52 pipeline steel [J]. Coal Technol., 2017, 36: 332
|
[38] |
(吴瑞红. X52管线钢的HIC敏感性研究 [J]. 煤炭技术, 2017, 36: 332)
|
[39] |
Park G T, Koh S U, Jung H G, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel [J]. Corros. Sci., 2008, 50: 1865
doi: 10.1016/j.corsci.2008.03.007
|
[40] |
Cheng Y. Analysis of electrochemical hydrogen permeation through X-65 pipeline steel and its implications on pipeline stress corrosion cracking [J]. Int. J. Hydrogen Energy, 2007, 32: 1269
doi: 10.1016/j.ijhydene.2006.07.018
|
[41] |
Olden V, Alvaro A, Akselsen O M. Hydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint-Experiments and FE simulations [J]. Int. J. Hydrogen Energy, 2012, 37: 11474
doi: 10.1016/j.ijhydene.2012.05.005
|
[42] |
Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking [J]. Corros. Sci., 2011, 53: 1201
doi: 10.1016/j.corsci.2010.12.011
|
[43] |
Huang F, Li X G, Liu J, et al. Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steel [J]. J. Mater. Sci., 2011, 46: 715
doi: 10.1007/s10853-010-4799-3
|
[44] |
Li K, Wu W, Hu H J, et al. Hydrogen diffusion characteristics in X90 pipeline steel [J]. Corros. Prot., 2016, 37: 279
|
[44] |
(李康, 武玮, 胡海军 等. 氢在X90管线钢中的扩散特性 [J]. 腐蚀与防护, 2016, 37: 279)
|
[45] |
Hu X J, Li P J, Wang Y K. The study of behavour of hydrogen diffusion and trapping in Armco-Fe—Ⅰ. diffusion coefficient of hydrogen in well-annealed Armco-Fe [J]. Jiangxi Sci., 1990, 8(3): 7
|
[45] |
(胡学军, 李培基, 王仪康. 工业纯铁中氢扩散及捕获行为研究—Ⅰ. 完全退火工业纯铁中氢的扩散系数 [J]. 江西科学, 1990, 8(3): 7)
|
[46] |
Modiano S, Carreño J A V, Fugivara C S, et al. Changes on iron electrode surface during hydrogen permeation in borate buffer solution [J]. Electrochim. Acta, 2008, 53: 3670
doi: 10.1016/j.electacta.2007.11.077
|
[47] |
Zhang T M, Zhao W M, Zhao Y J, et al. Effects of surface oxide films on hydrogen permeation and susceptibility to embrittlement of X80 steel under hydrogen atmosphere [J]. Int. J. Hydrogen Energy, 2018, 43: 3353
doi: 10.1016/j.ijhydene.2017.12.170
|
[48] |
Li B B, Zhao W M, Li S Y, et al. Effect of oxidation temperature on structure and hydrogen-penetration resistance of X80 steel oxide film [J]. Trans. Mater. Heat Treat., 2020, 41(10): 86
|
[48] |
(李贝贝, 赵卫民, 李守英 等. 氧化温度对X80钢氧化膜结构及阻氢性能的影响 [J]. 材料热处理学报, 2020, 41(10): 86)
|
[49] |
Li W W, Feng Y R, Gao H L. Study on the feature of X80 pipeline steel microstructural morphologies [J]. Pet. Tubular Goods Instrum., 2015, 1(1): 36
|
[49] |
(李为卫, 冯耀荣, 高惠临. X80管线钢不同组织形态的显微结构特征研究 [J]. 石油管理与仪器, 2015, 1(1): 36)
|
[50] |
Turk A, Pu S D, Bombač D, et al. Quantification of hydrogen trapping in multiphase steels: part II-Effect of austenite morphology [J]. Acta Mater., 2020, 197: 253
doi: 10.1016/j.actamat.2020.07.039
|
[51] |
Sun Y H, Frank Cheng Y. Hydrogen-induced degradation of high-strength steel pipeline welds: a critical review [J]. Eng. Fail. Anal., 2022, 133: 105985
doi: 10.1016/j.engfailanal.2021.105985
|
[52] |
Yuan W, Huang F, Gan L J, et al. Effect of microstructure on hydrogen induced cracking and hydrogen trapping behavior of X100 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 536
|
[52] |
(袁玮, 黄峰, 甘丽君 等. 显微组织对X100管线钢氢致开裂及氢捕获行为影响 [J]. 中国腐蚀与防护学报, 2019, 39: 536)
|
[53] |
Findley K O, O'Brien M K, Nako H. Critical Assessment 17: mechanisms of hydrogen induced cracking in pipeline steels [J]. Mater. Sci. Technol., 2015, 31: 1673
doi: 10.1080/02670836.2015.1121017
|
[54] |
Liu S G, Zhou Y, Wang Z, et al. Progress of detection techniques for hydrogen mapping in steel [J]. Surf. Technol., 2020, 49(8): 1
|
[54] |
(刘神光, 周耀, 王正 等. 钢中氢分布检测技术进展 [J]. 表面技术, 2020, 49(8): 1)
|
[55] |
Takai K, Watanuki R. Hydrogen in trapping states innocuous to environmental degradation of high-strength steels [J]. ISIJ Int., 2003, 43: 520
doi: 10.2355/isijinternational.43.520
|
[56] |
Kim J S, Lee Y H, Lee D L, et al. Microstructural influences on hydrogen delayed fracture of high strength steels [J]. Mater. Sci. Eng., 2009, 505A: 105
|
[57] |
Wei F G, Hara T, Tsuzaki K. Precise determination of the activation energy for desorption of hydrogen in two Ti-added steels by a single thermal-desorption spectrum [J]. Metall. Mater. Trans., 2004, 35B: 587
|
[58] |
Wallaert E, Depover T, Arafin M, et al. Thermal desorption spectroscopy evaluation of the hydrogen-trapping capacity of NbC and NbN precipitates [J]. Metall. Mater. Trans., 2014, 45A: 2412
|
[59] |
Nagumo M, Nakamura M, Takai K. Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels [J]. Metall. Mater. Trans., 2001, 32A: 339
|
[60] |
Oriani R A. The diffusion and trapping of hydrogen in steel [J]. Acta Metall., 1970, 18: 147
doi: 10.1016/0001-6160(70)90078-7
|
[61] |
Chen Y X, Chang Q G. Effect of traps on diffusivity of hydrogen in 20g clean steel [J]. Acta Metall. Sin., 2011, 47: 548
|
[61] |
(陈业新, 常庆刚. 20g纯净钢中氢陷阱对氢扩散系数的作用 [J]. 金属学报, 2011, 47: 548)
doi: 10.3724/SP.J.1037.2010.00610
|
[62] |
Lv X Q, Chen Y X. Effect of hydrogen traps on diffusion of hydrogen in SM490B clean steel [J]. Shanghai Met., 2013, 35(5): 14
|
[62] |
(吕学奇, 陈业新. 氢陷阱对纯净钢SM490B中氢扩散行为的作用 [J]. 上海金属, 2013, 35(5): 14)
|
[63] |
Zhao R, Chen Y X. Hydrogen diffusion in Q960 clean steel [J]. J. Shanghai Univ. (Nat. Sci.), 2013, 19: 61
|
[63] |
(赵荣, 陈业新. 氢在Q960纯净钢中的扩散 [J]. 上海大学学报 (自然科学版), 2013, 19: 61)
|
[64] |
Xiao H, Huang F, Peng Z X, et al. Sequential kinetic analysis of the influences of non-metallic inclusions on hydrogen diffusion and trapping in high-strength pipeline steel with Al-Ti deoxidisation and Mg treatment [J]. Corros. Sci., 2022, 195: 110006
doi: 10.1016/j.corsci.2021.110006
|
[65] |
Ren X C, Chu W Y, Li J X, et al. Effect of MnS inclusions on hydrogen diffusion in steel [J]. J. Univ. Sci. Technol. Beijing, 2007, 29: 232
|
[65] |
(任学冲, 褚武扬, 李金许 等. MnS夹杂对钢中氢扩散行为的影响 [J]. 北京科技大学学报, 2007, 29: 232)
|
[66] |
Brass A M, Chêne J. Influence of tensile straining on the permeation of hydrogen in low alloy Cr-Mo steels [J]. Corros. Sci., 2006, 48: 481
doi: 10.1016/j.corsci.2005.01.007
|
[67] |
He Z R. Study on hydrogen permeation behavior of X80 pipeline steel caused by cathodic protection and stress [D]. Qingdao: China University of Petroleum (East China), 2014
|
[67] |
(何枝容. X80钢在阴极保护和应力耦合条件下的氢渗透行为研究 [D]. 青岛: 中国石油大学 (华东), 2014)
|
[68] |
Zheng C B, Jiang H K, Huang Y L. Hydrogen permeation behaviour of X56 steel in simulated atmospheric environment under loading [J]. Corros. Eng. Sci. Technol., 2011, 46: 365
doi: 10.1179/147842209X12559428167689
|
[69] |
Kim H J, Lee M G. Analysis of hydrogen trapping behaviour in plastically deformed quenching and partitioning steel in relation to microstructure evolution by phase transformation [J]. J. Alloy. Compd., 2022, 904: 164018
doi: 10.1016/j.jallcom.2022.164018
|
[70] |
Zafra A, Belzunce J, Rodríguez C. Hydrogen diffusion and trapping in 42CrMo4 quenched and tempered steel: influence of quenching temperature and plastic deformation [J]. Mater. Chem. Phys., 2020, 255: 123599
doi: 10.1016/j.matchemphys.2020.123599
|
[71] |
Sun Y H, Cheng Y F. Hydrogen permeation and distribution at a high-strength X80 steel weld under stressing conditions and the implication on pipeline failure [J]. Int. J. Hydrogen Energy, 2021, 46: 23100
doi: 10.1016/j.ijhydene.2021.04.115
|
[72] |
Zhou C S, Luan X F, Wang Z, et al. Study on the hydrogen permeation behaviour of X80 pipeline steel in medium with carbon dioxide [J]. J. Zhejiang Univ. Technol., 2018, 46: 458
|
[72] |
(周成双, 栾晓飞, 王铮 等. CO2环境对X80管线钢氢渗透行为的影响 [J]. 浙江工业大学学报, 2018, 46: 458)
|
[73] |
Huang F, Cheng P, Zhao X Y, et al. Effect of sulfide films formed on X65 steel surface on hydrogen permeation in H2S environments [J]. Int. J. Hydrogen Energy, 2017, 42: 4561
doi: 10.1016/j.ijhydene.2016.10.130
|
[74] |
Zhou C S, Zheng S Q, Chen C F, et al. The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel [J]. Corros. Sci., 2013, 67: 184
doi: 10.1016/j.corsci.2012.10.016
|
[75] |
Ma H C, Zagidulin D, Goldman M, et al. Influence of iron oxides and calcareous deposits on the hydrogen permeation rate in X65 steel in a simulated groundwater [J]. Int. J. Hydrogen Energy, 2021, 46: 6669
doi: 10.1016/j.ijhydene.2020.11.129
|
[76] |
Slifka A J, Drexler E S, Nanninga N E, et al. Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment [J]. Corros. Sci., 2014, 78: 313
doi: 10.1016/j.corsci.2013.10.014
|
[77] |
Jiang Q M, Zhang X Q. Contrastive analysis of ASME standards for route design of hydrogen and natural gas long-distance transportation pipeline [J]. Pres. Vessel Technol., 2015, 32(8): 44
|
[77] |
(蒋庆梅, 张小强. 氢气与天然气长输管道线路设计ASME标准对比分析 [J]. 压力容器, 2015, 32(8): 44)
|
[78] |
An T, Peng H T, Bai P P, et al. Influence of hydrogen pressure on fatigue properties of X80 pipeline steel [J]. Int. J. Hydrogen Energy, 2017, 42: 15669
doi: 10.1016/j.ijhydene.2017.05.047
|
[79] |
An T, Zheng S Q, Peng H T, et al. Synergistic action of hydrogen and stress concentration on the fatigue properties of X80 pipeline steel [J]. Mater. Sci. Eng., 2017, 700A: 321
|
[80] |
Zhang S, Li J, An T, et al. Investigating the influence mechanism of hydrogen partial pressure on fracture toughness and fatigue life by in-situ hydrogen permeation [J]. Int. J. Hydrogen Energy, 2021, 46: 20621
doi: 10.1016/j.ijhydene.2021.03.183
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|