Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 77-86     CSTR: 32134.14.1005.4537.2022.037      DOI: 10.11902/1005.4537.2022.037
  研究报告 本期目录 | 过刊浏览 |
菟丝子提取物与碘化钾对冷轧钢在盐酸中的缓蚀协同效应
吴浩1, 邓书端2, 李向红1()
1.西南林业大学化学工程学院 西南地区林业生物质资源高效利用国家林业和草原局重点实验室 昆明 650224
2.西南林业大学材料科学与工程学院 昆明 650224
Synergistic Inhibition Effect of Cuscuta Chinensis Lam Extract and Potassium Iodide on Cold Rolled Steel in Hydrochloric Acid
WU Hao1, DENG Shuduan2, LI Xianghong1()
1.Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
2.Faculty of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China
全文: PDF(8469 KB)   HTML
摘要: 

以寄生植物菟丝子 (CCL) 为原料,通过回流提取法从中提取制备出菟丝子提取物 (CCLE),通过失重法、动电位极化曲线和电化学阻抗谱 (EIS) 测定CCLE和碘化钾 (KI) 复配后对冷轧钢在1.0 mol/L HCl溶液中的缓蚀协同效应。结果表明,CCLE对冷轧钢在HCl中有较好的缓蚀作用,最大缓蚀率为84.0%;其与KI复配后,最大缓释率可进一步提升到90.8%。缓蚀协同效应系数在各复配浓度和温度下均大于1。CCLE和CCLE/KI在冷轧钢表面均符合Langmuir吸附等温式,复配后的吸附平衡常数和标准吸附Gibbs自由能 (ΔG0) 绝对值进一步增大。CCLE和CCLE/KI复配均属于混合抑制型缓蚀剂,但复配后对阴阳两极的抑制作用进一步增强。Nyquist图谱呈现单一半圆容抗弧,CCLE和KI复配后,电荷转移电阻明显增大。扫描电子显微镜 (SEM) 和原子力显微镜 (AFM) 表面形貌观察也表明,CCLE和KI复配后有效抑制了HCl对冷轧钢表面的腐蚀,两者存在缓蚀协同效应。

关键词 缓蚀剂缓蚀协同效应冷轧钢菟丝子碘化钾盐酸    
Abstract

Cuscuta chinensis Lam extract (CCLE) was obtained from the dodder, which is a kind of parasitic plant, by circulation reflux method. The synergistic inhibition effect of CCLE and KI on cold rolled steel in 1.0 mol/L HCl solution was studied by mass loss method, potentiodynamic polarization curve measurement and electrochemical impedance spectroscope, as well as electron microscope (SEM) and atomic force microscope (AFM). The results showed that CCLE acts as an efficient inhibitor for cold rolled steel in HCl solution, and the maximum inhibition efficiency is 84.0%. The inhibition can be further increased to 90.8% for the combination of CCLE with KI. All the synergism parameters are higher than unity for the design of various compound concentrations and test temperatures. The adsorption of CCLE and CCLE/KI obey Langmuir isotherm. When CCLE is incorporated with KI, both of the adsorption equilibrium constant (K) and the absolute value of standard adsorption free energy (ΔG0) becomes larger. CCLE and CCLE/KI can be arranged as mixed-type inhibitors, and the inhibition coefficient is strengthened after combination. There exists a single capacitive loop in the Nyqusit diagram. The charge transfer resistance turns to be much higher for the combination of CCLE with KI. SEM and AFM observation result also proves that the combination of CCLE and KI presents a significantly synergistic inhibition effect on the surface of cold rolled steel in HCl solution.

Key wordscorrosion inhibitor    synergistic inhibition effect    cold rolled steel    Cuscuta chinensis Lam    potassium iodide    hydrochloric acid
收稿日期: 2022-02-12      32134.14.1005.4537.2022.037
ZTFLH:  TG174  
基金资助:国家自然科学基金(52161016);云南省基础研究计划杰出青年项目(202001AV070008);云南省万人计划青年拔尖人才专项(51900109);西南地区林业生物质资源高效利用国家林业和草原局重点实验室开放基金(2021-KF10)
作者简介: 吴浩,男,1991年生,博士生

引用本文:

吴浩, 邓书端, 李向红. 菟丝子提取物与碘化钾对冷轧钢在盐酸中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2023, 43(1): 77-86.
Hao WU, Shuduan DENG, Xianghong LI. Synergistic Inhibition Effect of Cuscuta Chinensis Lam Extract and Potassium Iodide on Cold Rolled Steel in Hydrochloric Acid. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 77-86.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.037      或      https://www.jcscp.org/CN/Y2023/V43/I1/77

图1  缓蚀剂CCLE的FTIR谱图
图2  不同温度下1.0 mol/L HCl中缓蚀率 (ηw) 和缓蚀剂浓度 (c) 关系
图3  20~50 ℃时1.0 mol/L HCl溶液中缓蚀协同效应系数 (s) 和CCLE浓度 (c) 的关系
图4  CCLE和CCLE+10 mg/L KI的c/θ-c拟合直线
InhibitorT / ℃r 2SlopeInterceptK / L·mg-1ΔG0 / kJ·mol-1
CCLE200.99511.219.340.1071-28.23
300.99671.109.370.1067-29.18
400.99881.136.550.1527-31.08
500.99821.1013.590.0736-30.11
CCLE+10 mg/L KI200.99981.122.040.4893-31.93
300.99991.091.490.6721-33.82
400.99991.064.090.2443-32.30
500.99971.066.810.1469-31.96
表1  c/θ-c线性回归参数和吸附热力学参数
图5  冷轧钢在1.0 mol/L HCl中的动电位极化曲线
Inhibitorc / mg·L-1Ecorr / mV-bc / mV·dec-1ba / mV·dec-1Icorr / μA·cm-2ηp / %
CCLE0-46011546251---
10-455111446872.9
50-462127545578.1
100-456134573386.8
CCLE+10 mg/L KI10-452116453586.1
50-449141483187.6
100-455140562988.4
表2  20 ℃时冷轧钢在1.0 mol/L HCl中CCLE和CCLE/KI作用下动电位极化参数
图6  20 ℃时冷轧钢在1.0 mol/L HCl溶液中的EIS谱
图7  拟合EIS数据的等效电路图
Inhibitorc / mg·L-1Rs / Ω·cm2Rt / Ω·cm2Q / μΩ-1·sa·cm-2aCdl / μF·cm-2χ 2ηR / %
CCLE01.5102.31080.90651.6×10-3---
101.3218.1810.90524.5×10-353.1
501.2388.8960.84518.6×10-373.7
1001.4487.7780.86454.8×10-379.0
CCLE+10 mg/L KI101.4346.0860.87524.8×10-370.4
501.4496.8800.85484.4×10-379.4
1001.2524.1720.85408.1×10-380.5
表3  20 ℃时冷轧钢在不含和含有CCLE和CCLE/KI的1.0 mol/L HCl中的EIS拟合参数
图8  冷轧钢表面的SEM微观形貌
图9  冷轧钢表面的3D-AFM微观形貌
CRS surfaceRa / nmRq / nmRmax / nm
Before immersion4.516.6556.7
HCl3.625.1393.0
HCl+KI1211541030
HCl+CCLE37.653449
HCl+CCLE+KI61.179646
表4  AFM测试的冷轧钢表面粗糙度参数
图10  协同吸附示意图
1 Finšgar M, Jackson J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review [J]. Corros. Sci., 2014, 86: 17
doi: 10.1016/j.corsci.2014.04.044
2 Verma C, Ebenso E E, Bahadur I, et al. An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media [J]. J. Mol. Liq., 2018, 266: 577
doi: 10.1016/j.molliq.2018.06.110
3 Li X H, Xu X, Deng S D. Research progress and prospects of the inhibition of plant corrosion inhibitors to steel [J]. Clean. World, 2018, 34(9): 39
3 李向红, 徐昕, 邓书端. 植物缓蚀剂对钢的缓蚀作用研究进展与展望 [J]. 清洗世界, 2018, 34(9): 39
4 Zaferani S H, Sharifi M, Zaarei D, et al. Application of eco-friendly products as corrosion inhibitors for metals in acid pickling processes-A review [J]. J. Environ. Chem. Eng., 2013, 1: 652
doi: 10.1016/j.jece.2013.09.019
5 Chen W, Huang D X, Wei F. Inhibition effect of Brainea Insignis extract against carbon steel corrosion in HCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 376
5 陈文, 黄德兴, 韦奉. 铁蕨提取物对碳钢在盐酸中的缓蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 376
6 Khadraoui A, Khelifa A. Ethanolic extract of Ruta chalepensis as an eco-friendly inhibitor of acid corrosion of steel [J]. Res. Chem. Intermed., 2013, 39: 3937
doi: 10.1007/s11164-012-0910-5
7 Qiang Y J, Zhang S T, Tan B C, et al. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution [J]. Corros. Sci., 2018, 133: 6
doi: 10.1016/j.corsci.2018.01.008
8 He T, Emori W, Zhang R H, et al. Detailed characterization of Phellodendron chinense Schneid and its application in the corrosion inhibition of carbon steel in acidic media [J]. Bioelectrochemistry, 2019, 130: 107332
doi: 10.1016/j.bioelechem.2019.107332
9 Prabakaran M, Kim S H, Hemapriya V, et al. Tragia plukenetii extract as an eco-friendly inhibitor for mild steel corrosion in HCl 1 M acidic medium [J]. Res. Chem. Intermed., 2016, 42: 3703
doi: 10.1007/s11164-015-2240-x
10 Zhang M L, Zhao J M. Research progress of synergistic inhibition effect and mechanism [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 1
10 张漫路, 赵景茂. 缓蚀剂协同效应与协同机理的研究进展 [J]. 中国腐蚀与防护学报, 2016, 36: 1
11 Umoren S A, Solomon M M. Effect of halide ions on the corrosion inhibition efficiency of different organic species-A review [J]. J. Ind. Eng. Chem., 2015, 21: 81
doi: 10.1016/j.jiec.2014.09.033
12 Wan S, Zhang T, Chen H K, et al. Kapok leaves extract and synergistic iodide as novel effective corrosion inhibitors for Q235 carbon steel in H2SO4 medium [J]. Ind. Crops Prod., 2022, 178: 114649
doi: 10.1016/j.indcrop.2022.114649
13 Hu Q, Qiu Y B, Zhang G A, et al. Study on the synergistic effect between KI and the extracts of capsella bursa-pastoris inhibitors [J]. Corros. Prot., 2014, 35: 110
13 胡琴, 邱于兵, 张国安 等. 无机碘离子复配植物荠菜缓蚀剂的研究 [J]. 腐蚀与防护, 2014, 35: 110
14 Lu Y, Zheng X W, Liu X L, et al. Corrosion inhibition of ficus microcarpa leaves extract and its synergistic effect with KI in sulfuric acid [J]. Surf. Technol., 2003, 42(3): 28
14 卢燕, 郑兴文, 刘新露 等. 硫酸介质中榕树叶提取液的缓蚀性能及其与KI的缓蚀协同效应 [J]. 表面技术, 2013, 42(3): 28
15 Ituen E, James A, Akaranta O, et al. Eco-friendly corrosion inhibitor from Pennisetum purpureum biomass and synergistic intensifiers for mild steel [J]. Chin. J. Chem. Eng., 2016, 24: 1442
doi: 10.1016/j.cjche.2016.04.028
16 Zheng X W, Gong M, Zeng X G, et al. The synergistic inhibition effect of cinnamomum camphor leaves extractive and potassium iodide [J]. Surf. Technol., 2011, 40(4): 41
16 郑兴文, 龚敏, 曾宪光 等. 樟树叶提取液与碘化钾的缓蚀协同效应 [J]. 表面技术, 2011, 40(4): 41
17 Guo Y, Gao M D, Wang Y, et al. Synergistic effect of corrosion inhibition of tobacco rob extract and potassium iodide [J]. Ind. Water Treat., 2015, 35(12): 57
17 郭勇, 高美丹, 王艳 等. 烟柴杆提取物与碘化钾的缓蚀协同效应 [J]. 工业水处理, 2015, 35(12): 57
18 Aquino-Torres E, Camacho-Mendoza R L, Gutierrez E, et al. The influence of iodide in corrosion inhibition by organic compounds on carbon steel: theoretical and experimental studies [J]. Appl. Surf. Sci., 2020, 514: 145928
doi: 10.1016/j.apsusc.2020.145928
19 Zhang F, Li X H. Inhibition performance of alternanthera philoxeroide extract on cold rolled steel in HCl solution [J]. Corros. Prot., 2020, 41(7): 30
19 张富, 李向红. 空心莲子草提取物对冷轧钢在HCl溶液中的缓蚀性能 [J]. 腐蚀与防护, 2020, 41(7): 30
20 Hu F C, Yu P, Yuan J L, et al. Eupatorium adenophora spreng. leaves extract as corrosion inhibitor for cold rolled steel in HCl solution [J]. Total Corros. Control, 2015, 29(10): 53
20 胡富纯, 余攀, 袁觉立 等. 紫茎泽兰叶提取物作为冷轧钢在HCl中的缓蚀剂 [J]. 全面腐蚀控制, 2015, 29(10): 53
21 Wu Y G, Liu Z P, Liu F. Research progress on biological interaction between Cuscuta and their host plants [J]. Chin. J. Grassl., 2020, 42(4): 169
21 吴昱果, 刘志鹏, 刘芳. 菟丝子和寄主互作的生物学研究进展 [J]. 中国草地学报, 2020, 42(4): 169
22 Hosseini M, Mertens S F L, Arshadi M R. Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine [J]. Corros. Sci., 2003, 45: 1473
doi: 10.1016/S0010-938X(02)00246-9
23 Langmuir I. The constitution and fundamental properties of solids and liquids [J]. J. Am. Chem. Soc., 1916, 38: 2221
doi: 10.1021/ja02268a002
24 Singh A, Ansari K R, Chauhan D S, et al. Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15%HCl medium [J]. J. Colloid Interf. Sci., 2020, 560: 225
doi: 10.1016/j.jcis.2019.10.040
25 Zhao T P, Mu G N. The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid [J]. Corros. Sci., 1999, 41: 1937
doi: 10.1016/S0010-938X(99)00029-3
26 Pareek S, Jain D, Hussain S, et al. A new insight into corrosion inhibition mechanism of copper in aerated 3.5wt.%NaCl solution by eco-friendly imidazopyrimidine Dye: experimental and theoretical approach [J]. Chem. Eng. J., 2019, 358: 725
doi: 10.1016/j.cej.2018.08.079
27 Cao C. On electrochemical techniques for interface inhibitor research [J]. Corros. Sci., 1996, 38: 2073
doi: 10.1016/S0010-938X(96)00034-0
28 Zhang Q H, Hou B S, Li Y Y, et al. Two novel chitosan derivatives as high efficient eco-friendly inhibitors for the corrosion of mild steel in acidic solution [J]. Corros. Sci., 2020, 164: 108346
doi: 10.1016/j.corsci.2019.108346
29 Li X H, Xie X G, Deng S D, et al. Inhibition effect of two mercaptopyrimidine derivatives on cold rolled steel in HCl solution [J]. Corros. Sci., 2015, 92: 136
doi: 10.1016/j.corsci.2014.11.044
30 Cen H Y, Cao J J, Chen Z Y. Functionalized carbon nanotubes as a novel inhibitor to enhance the anticorrosion performance of carbon steel in CO2-saturated NaCl solution [J]. Corros. Sci., 2020, 177: 109011
doi: 10.1016/j.corsci.2020.109011
31 Li X H, Deng S D, Fu H, et al. Adsorption and inhibition effect of 6-benzylaminopurine on cold rolled steel in 1.0 M HCl [J]. Electrochim. Acta, 2009, 54: 4089
doi: 10.1016/j.electacta.2009.02.084
32 Li J P, Wang J, Zhang Y W, et al. Advancement on the research of China dodder [J]. China Med. Her., 2009, 6(23): 5
32 李建平, 王静, 张跃文 等. 菟丝子的研究进展 [J]. 中国医药导报, 2009, 6(23): 5
33 Umoren S A, Ogbobe O, Igwe I O, et al. Inhibition of mild steel corrosion in acidic medium using synthetic and naturally occurring polymers and synergistic halide additives [J]. Corros. Sci., 2008, 50: 1998
doi: 10.1016/j.corsci.2008.04.015
[1] 王泉润, 侯进, 侯保荣, 田惠文. 气相缓蚀剂分析方法研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[2] 吕正平, 李缘, 刘晓航, 崔中雨, 崔洪芝, 王昕, 逄昆, 李燚周. 酸性氯化钠溶液中硝酸钠和硫脲对7075铝合金缝隙腐蚀的协同缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[3] 凡玉方, 张亚飞, 尹刘森, 赵聪慧, 何艳宾, 张传祥. 碳点在金属防腐领域中的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[4] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[5] 李树丽, 邓书端, 李向红. 铝植物缓蚀剂的研究进展与展望[J]. 中国腐蚀与防护学报, 2023, 43(5): 929-947.
[6] 周浩, 尤世界, 王胜利. 铜质文物在CO2 环境中的腐蚀行为及缓蚀剂研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[7] 董红梅, 李宝毅, 冉博元, 王琦, 牛宇岚, 丁莉峰, 强玉杰. 一种环保型缓蚀剂利拉利汀对紫铜在硫酸中的缓蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[8] 周坤, 柳鑫华, 刘帅. 在酸性介质中脐橙皮提取物对不锈钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43(3): 619-629.
[9] 黄苗, 王丽姿, 马晓青, 李向红. 核桃青皮提取物与Nd(NO3)3对Al在HCl溶液中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2023, 43(3): 471-480.
[10] 张佳欢, 崔中雨, 范林, 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[11] 赵艳亮, 赵景茂. 层状双金属氢氧化物对镁合金的保护作用及自愈性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[12] 邓志华, 雷然, 张智勇, 杨维宇, 李向红. 香根草提取物对冷轧钢在盐酸溶液中的缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43(1): 173-178.
[13] 雷然, 石成杰, 李向红. 槐米提取物对Al在HCl溶液中的缓蚀作用[J]. 中国腐蚀与防护学报, 2022, 42(6): 939-947.
[14] 连宇博, 张庆祝, 韩创辉, 李文娟, 翁华涛, 蒋伟. 一种基于MOFs与BTA的纳米缓蚀胶囊对铜的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1058-1064.
[15] 罗为平, 罗雪, 石悦婷, 王新潮, 张胜涛, 高放, 李红茹. Q235钢表面的超疏水吸附层形成与缓蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 903-912.