|
|
一种基于MOFs与BTA的纳米缓蚀胶囊对铜的缓蚀行为研究 |
连宇博( ), 张庆祝, 韩创辉, 李文娟, 翁华涛, 蒋伟 |
西安长庆化工集团有限公司 西安 710018 |
|
Inhibition Behavior of a Nano-corrosion Inhibitor Capsule Prepared from MOFs and BTA for Copper |
LIAN Yubo( ), ZHANG Qingzhu, HAN Chuanghui, LI Wenjuan, WENG Huatao, JIANG Wei |
Xi'an Changqing Chemical Group Co. Ltd., Xi'an 710018, China |
引用本文:
连宇博, 张庆祝, 韩创辉, 李文娟, 翁华涛, 蒋伟. 一种基于MOFs与BTA的纳米缓蚀胶囊对铜的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1058-1064.
Yubo LIAN,
Qingzhu ZHANG,
Chuanghui HAN,
Wenjuan LI,
Huatao WENG,
Wei JIANG.
Inhibition Behavior of a Nano-corrosion Inhibitor Capsule Prepared from MOFs and BTA for Copper[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1058-1064.
[1] |
Pan Y, Sun L, Yang S C, et al. Research progress of pipeline corrosion and protection [J]. Corros. Sci. Prot. Technol., 2014, 26: 77
|
[1] |
(潘一, 孙林, 杨双春 等. 国内外管道腐蚀与防护研究进展 [J]. 腐蚀科学与防护技术, 2014, 26: 77)
|
[2] |
Kear G, Barker B D, Walsh F C. Electrochemical corrosion of unalloyed copper in chloride media—a critical review [J]. Corros. Sci., 2004, 46: 109
doi: 10.1016/S0010-938X(02)00257-3
|
[3] |
Zhang N. Corrosion detection technology and anticorrosion measures for oil and gas pipelines [J]. Total Corros. Control, 2018, 32(7): 108
|
[3] |
(张宁. 油气管道腐蚀检测技术与防腐措施 [J]. 全面腐蚀控制, 2018, 32(7): 108)
|
[4] |
Ding Q M, Gao Y N, Hou W L, et al. Influence of Cl- concentration on corrosion behavior of reinforced concrete in Soil [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 705
|
[4] |
(丁清苗, 高宇宁, 侯文亮 等. Cl-浓度对钢筋混凝土在土壤中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 705)
|
[5] |
Finšgar M, Jackson J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review [J]. Corros. Sci., 2014, 86: 17
doi: 10.1016/j.corsci.2014.04.044
|
[6] |
Wen J X, Zhang X, Liu Y X, et al. Preparation and performance of smart coating doped with nanocontainers of BTA@MSNs-SO3H-PDDA for anti-corrosion of carbon steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 309
|
[6] |
(文家新, 张欣, 刘云霞 等. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 309)
|
[7] |
Qian B, Liu C B, Song Z W, et al. Anticorrosion performance of epoxy coating modified with nanocontainers [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 133
|
[7] |
(钱备, 刘成宝, 宋祖伟 等. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能 [J]. 中国腐蚀与防护学报, 2018, 38: 133)
|
[8] |
Chen T, Yang N W, Fu J J. Controlled release of cargo molecules from hollow mesoporous silicananoparticles based on acid and base dual-responsive cucurbit[7]uril pseudorotaxanes [J]. Chem. Commun., 2013, 49: 6555
doi: 10.1039/c3cc43221a
|
[9] |
Sun S Q, Zhao X Y, Cheng M, et al. Facile preparation of redox-responsive hollow mesoporous silica spheres for the encapsulation and controlled release of corrosion inhibitors [J]. Prog. Org. Coat., 2019, 136: 105302
|
[10] |
Hong C Y, Li X, Pan C Y. Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release [J]. J. Mater. Chem., 2009, 19: 5155
doi: 10.1039/b820534e
|
[11] |
Abdullayev E, Lvov Y. Clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers [J]. J. Mater. Chem., 2010, 20: 6681
doi: 10.1039/c0jm00810a
|
[12] |
Guo L, Zhu S H, Zhang S T, et al. Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium [J]. Corros. Sci., 2014, 87: 366
doi: 10.1016/j.corsci.2014.06.040
|
[13] |
Zhou S Q, Cao C N. The synergistic effect of organic amines and chloride ion on the corrosion inhibition of iron in acidic solution [J]. J. Chin. Soc. Corros. Prot., 1986, 6: 283
|
[13] |
(周盛奇, 曹楚南. 酸性溶液中有机胺和氯离子对铁缓蚀的协同作用 [J]. 中国腐蚀与防护学报, 1986, 6: 283)
|
[14] |
Cao K Y, Yu Z X, Yin D, et al. Fabrication of BTA-MOF-TEOS-GO nanocomposite to endow coating systems with active inhibition and durable anticorrosion performances [J]. Prog. Org. Coat., 2020, 143: 105629
|
[15] |
Farha O K, Eryazici I, Jeong N C, et al. Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? [J]. J. Am. Chem. Soc., 2012, 134: 15016
doi: 10.1021/ja3055639
pmid: 22906112
|
[16] |
Koh K, Wong-Foy A G, Matzger A J. A porous coordination copolymer with over 5000 m2/g BET surface area [J]. J. Am. Chem. Soc., 2009, 131: 4184
doi: 10.1021/ja809985t
|
[17] |
Gao X C, Cui R X, Ji G F, et al. Size and surface controllable metal-organic frameworks (MOFs) for fluorescence imaging and cancer therapy [J]. Nanoscale, 2018, 10: 6205
doi: 10.1039/C7NR08892B
|
[18] |
Liu Y Y, Ng Z, Khan E A, et al. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates [J]. Microporous Mesoporous Mater., 2009, 118: 296
doi: 10.1016/j.micromeso.2008.08.054
|
[19] |
Liu X J, Li W H, Wang W, et al. Synthesis and characterization of pH-responsive mesoporous chitosan microspheres loaded with sodium phytate for smart water-based coatings [J]. Mater. Corros., 2018, 69: 736
|
[20] |
Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
|
[20] |
(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
|
[21] |
Xie D M, Tong S P, Cao J L. Fundamental Knowledge of Applied Electrochemistry [M]. Beijing: Chemical Industry Press, 2013
|
[21] |
(谢德明, 童少平, 曹江林. 应用电化学基础 [M]. 北京: 化学工业出版社, 2013)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|