Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 1058-1064          DOI: 10.11902/1005.4537.2021.288
  研究报告 本期目录 | 过刊浏览 |
一种基于MOFs与BTA的纳米缓蚀胶囊对铜的缓蚀行为研究
连宇博(), 张庆祝, 韩创辉, 李文娟, 翁华涛, 蒋伟
西安长庆化工集团有限公司 西安 710018
Inhibition Behavior of a Nano-corrosion Inhibitor Capsule Prepared from MOFs and BTA for Copper
LIAN Yubo(), ZHANG Qingzhu, HAN Chuanghui, LI Wenjuan, WENG Huatao, JIANG Wei
Xi'an Changqing Chemical Group Co. Ltd., Xi'an 710018, China
引用本文:

连宇博, 张庆祝, 韩创辉, 李文娟, 翁华涛, 蒋伟. 一种基于MOFs与BTA的纳米缓蚀胶囊对铜的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1058-1064.
Yubo LIAN, Qingzhu ZHANG, Chuanghui HAN, Wenjuan LI, Huatao WENG, Wei JIANG. Inhibition Behavior of a Nano-corrosion Inhibitor Capsule Prepared from MOFs and BTA for Copper[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1058-1064.

全文: PDF(6061 KB)   HTML
摘要: 

通过水热法合成了结构立体、具有明显孔道结构的MOF-5。进一步通过负压法将苯并三氮唑负载进MOF-5形成BTA@MOF缓蚀胶囊。采用TEM、SEM、FT-IR、XRD以及电化学测试等手段对BTA@MOF的结构以及缓蚀性能进行表征评价。结果表明:缓蚀剂分子成功负载进MOF-5内部孔道,制备的缓释剂胶囊具有缓慢释放的特性,能够有效抑制铜的腐蚀。

关键词 金属有机框架化合物缓蚀剂胶囊缓慢释放金属防护    
Abstract

A three-dimensional metal organic frame material (MOF-5) was synthesized by hydrothermal method, and then, the corrosion inhibitor benzotriazole (BTA) molecule was loaded into MOF-5 to form corrosion inhibitor capsules. The structures and corrosion inhibition properties of the prepared BTA@MOF-5 was characterized by means of TEM, SEM, FT-IR, XRD and electrochemical testing techniques. The results show that the prepared MOF-5 can be an ideal candidate as an inhibitor carrier, while the BTA molecules were successfully loaded into MOF-5. Furthermore, the acquired BTA@MOF-5 had the characteristics of slow release for corrosion inhibitor benzotriazole, which could provide corrosion protection for copper.

Key wordsBTA@MOF-5    corrosion inhibitor capsule    sustained release    metal protection
收稿日期: 2021-10-19     
ZTFLH:  TG174.42  
作者简介: 连宇博,男,1991年生,工程师
图1  MOF-5和BTA@MOF-5的微观形貌
图2  BTA、MOF-5和BTA@MOF-5的FT-IR谱图
图3  BTA、MOF-5和BTA@MOF-5的XRD谱图
图4  BTA、MOF-5和BTA@MOF-5的热重分析曲线
图5  BTA缓蚀剂的标准吸光度曲线和浓度标准曲线图
图6  MOF-5释放的BTA的UV吸光谱随时间的变化
t / hAbsorbance / L·mol-1·cm-1Concentration / mg·L-1
10.69513.6
20.75414.7
30.78915.4
40.80515.8
50.82416.2
60.84616.5
表1  100 mg/L BTA@MOF-5溶液中不同时间后BTA的吸光度和对应浓度
图7  纯铜在未添加和添加缓蚀剂的3.5%NaCl溶液中定时测量的电化学阻抗谱图
SampleRct / Ω·cm2CdlRf / Ω·cm2Cfη / %
Y01 / Sn ·Ω-1·cm-2n1Y02 / Sn ·Ω-1·cm-2n2
Blank172.333.85×10-60.83970.32×10454.81×10-50.4253---
MOF-552.7410.08×10-60.76730.59×104151.6×10-50.4314---
@-1 h35155.823×10-60.85581.36×1042.372×10-50.496280.5
@-2 h35545.301×10-60.85651.68×1042.085×10-50.512983.4
@-3 h37104.958×10-60.85342.19×1042.039×10-50.482487.0
@-4 h46784.659×10-60.85272.40×1041.751×10-50.517188.4
@-5 h54864.441×10-60.85072.62×1041.452×10-50.545489.5
@-6 h60954.076×10-60.85372.89×1041.263×10-50.56990.5
表2  纯铜在3.5% NaCl溶液中电化学阻抗谱拟合参数
图8  纯铜在3.5% NaCl溶液中的极化曲线
SampleCM / mg·L-1Ecorr vs SCE / mVIcorr / μA·cm-2η / %
Blank0-216.014.7---
MOF-5100-196.429.0---
BTA@MOF-5100-194.90.6795.5
表3  纯铜在3.5%NaCl溶液中极化曲线拟合参数
图9  纯铜在3.5%NaCl溶液中浸泡24 h后的SEM形貌
[1] Pan Y, Sun L, Yang S C, et al. Research progress of pipeline corrosion and protection [J]. Corros. Sci. Prot. Technol., 2014, 26: 77
[1] (潘一, 孙林, 杨双春 等. 国内外管道腐蚀与防护研究进展 [J]. 腐蚀科学与防护技术, 2014, 26: 77)
[2] Kear G, Barker B D, Walsh F C. Electrochemical corrosion of unalloyed copper in chloride media—a critical review [J]. Corros. Sci., 2004, 46: 109
doi: 10.1016/S0010-938X(02)00257-3
[3] Zhang N. Corrosion detection technology and anticorrosion measures for oil and gas pipelines [J]. Total Corros. Control, 2018, 32(7): 108
[3] (张宁. 油气管道腐蚀检测技术与防腐措施 [J]. 全面腐蚀控制, 2018, 32(7): 108)
[4] Ding Q M, Gao Y N, Hou W L, et al. Influence of Cl- concentration on corrosion behavior of reinforced concrete in Soil [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 705
[4] (丁清苗, 高宇宁, 侯文亮 等. Cl-浓度对钢筋混凝土在土壤中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 705)
[5] Finšgar M, Jackson J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review [J]. Corros. Sci., 2014, 86: 17
doi: 10.1016/j.corsci.2014.04.044
[6] Wen J X, Zhang X, Liu Y X, et al. Preparation and performance of smart coating doped with nanocontainers of BTA@MSNs-SO3H-PDDA for anti-corrosion of carbon steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 309
[6] (文家新, 张欣, 刘云霞 等. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 309)
[7] Qian B, Liu C B, Song Z W, et al. Anticorrosion performance of epoxy coating modified with nanocontainers [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 133
[7] (钱备, 刘成宝, 宋祖伟 等. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能 [J]. 中国腐蚀与防护学报, 2018, 38: 133)
[8] Chen T, Yang N W, Fu J J. Controlled release of cargo molecules from hollow mesoporous silicananoparticles based on acid and base dual-responsive cucurbit[7]uril pseudorotaxanes [J]. Chem. Commun., 2013, 49: 6555
doi: 10.1039/c3cc43221a
[9] Sun S Q, Zhao X Y, Cheng M, et al. Facile preparation of redox-responsive hollow mesoporous silica spheres for the encapsulation and controlled release of corrosion inhibitors [J]. Prog. Org. Coat., 2019, 136: 105302
[10] Hong C Y, Li X, Pan C Y. Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release [J]. J. Mater. Chem., 2009, 19: 5155
doi: 10.1039/b820534e
[11] Abdullayev E, Lvov Y. Clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers [J]. J. Mater. Chem., 2010, 20: 6681
doi: 10.1039/c0jm00810a
[12] Guo L, Zhu S H, Zhang S T, et al. Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium [J]. Corros. Sci., 2014, 87: 366
doi: 10.1016/j.corsci.2014.06.040
[13] Zhou S Q, Cao C N. The synergistic effect of organic amines and chloride ion on the corrosion inhibition of iron in acidic solution [J]. J. Chin. Soc. Corros. Prot., 1986, 6: 283
[13] (周盛奇, 曹楚南. 酸性溶液中有机胺和氯离子对铁缓蚀的协同作用 [J]. 中国腐蚀与防护学报, 1986, 6: 283)
[14] Cao K Y, Yu Z X, Yin D, et al. Fabrication of BTA-MOF-TEOS-GO nanocomposite to endow coating systems with active inhibition and durable anticorrosion performances [J]. Prog. Org. Coat., 2020, 143: 105629
[15] Farha O K, Eryazici I, Jeong N C, et al. Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? [J]. J. Am. Chem. Soc., 2012, 134: 15016
doi: 10.1021/ja3055639 pmid: 22906112
[16] Koh K, Wong-Foy A G, Matzger A J. A porous coordination copolymer with over 5000 m2/g BET surface area [J]. J. Am. Chem. Soc., 2009, 131: 4184
doi: 10.1021/ja809985t
[17] Gao X C, Cui R X, Ji G F, et al. Size and surface controllable metal-organic frameworks (MOFs) for fluorescence imaging and cancer therapy [J]. Nanoscale, 2018, 10: 6205
doi: 10.1039/C7NR08892B
[18] Liu Y Y, Ng Z, Khan E A, et al. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates [J]. Microporous Mesoporous Mater., 2009, 118: 296
doi: 10.1016/j.micromeso.2008.08.054
[19] Liu X J, Li W H, Wang W, et al. Synthesis and characterization of pH-responsive mesoporous chitosan microspheres loaded with sodium phytate for smart water-based coatings [J]. Mater. Corros., 2018, 69: 736
[20] Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
[20] (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[21] Xie D M, Tong S P, Cao J L. Fundamental Knowledge of Applied Electrochemistry [M]. Beijing: Chemical Industry Press, 2013
[21] (谢德明, 童少平, 曹江林. 应用电化学基础 [M]. 北京: 化学工业出版社, 2013)
[1] 姚勇, 刘国军, 黎石竹, 刘淼然, 陈川, 黄廷城, 林海, 李展江, 刘雨薇, 王振尧. 金属材料腐蚀预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 983-991.
[2] 李树丽, 邓书端, 李向红. 铝植物缓蚀剂的研究进展与展望[J]. 中国腐蚀与防护学报, 2023, 43(5): 929-947.
[3] 陈佳起, 侯道林, 肖晗, 高雨薇, 董社英. 酸性介质中桂圆壳碳点对碳钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
[4] 文家新, 张欣, 刘云霞, 周永福, 刘克建. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[5] 王晶, 王斯琰, 张崇, 王文涛, 曹星, 樊宁, 徐宏妍. 氮掺杂对碳纳米颗粒缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[6] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[7] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[8] 李清, 张德平, 李晓荣, 王薇, 孙宝壮, 艾池. TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[9] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[10] 李清 张德平 李晓荣 王薇 孙宝壮 艾池. TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[11] 白鹏凯, 许萍. 水处理领域中的绿色环保阻垢剂及其研究进展[J]. 中国腐蚀与防护学报, 2020, 40(2): 87-95.
[12] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[13] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[14] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[15] 刘建国 高歌 徐亚洲 季菀然 李自力. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 0, (): 0-0.