|
|
300M超高强度钢在模拟海洋环境中的腐蚀行为研究 |
李晗1, 刘元海2, 赵连红2, 崔中雨1( ) |
1.中国海洋大学材料科学与工程学院 青岛 266100 2.中国特种飞行器研究所 荆门 448004 |
|
Corrosion Behavior of 300M Ultra High Strength Steel in Simulated Marine Environment |
LI Han1, LIU Yuanhai2, ZHAO Lianhong2, CUI Zhongyu1( ) |
1.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China 2.China Special Vehicle Research Institute, Jingmen 448004, China |
引用本文:
李晗, 刘元海, 赵连红, 崔中雨. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
Han LI,
Yuanhai LIU,
Lianhong ZHAO,
Zhongyu CUI.
Corrosion Behavior of 300M Ultra High Strength Steel in Simulated Marine Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 87-94.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.035
或
https://www.jcscp.org/CN/Y2023/V43/I1/87
|
1 |
Liu M T, Liu J H, Zhong P. Research development of corrosion resistance of ultra-high strength steel [J]. Sci. Technol. Rev., 2010, 28(9): 112
|
1 |
柳木桐, 刘建华, 钟平. 超高强度钢耐腐蚀性能研究进展 [J]. 科技导报, 2010, 28(9): 112
|
2 |
Ran X Z, Liu D, Li A, et al. Microstructure characterization and mechanical behavior of laser additive manufactured ultrahigh-strength AerMet100 steel [J]. Mater. Sci. Eng., 2016, 663A: 69
|
3 |
Malakondaiah G, Srinivas M, Rao P R. Ultrahigh-strength low-alloy steels with enhanced fracture toughness [J]. Prog. Mater. Sci., 1997, 42: 209
doi: 10.1016/S0079-6425(97)00016-9
|
4 |
Liu J H, Wen C, Yu M, et al. Manifestations in corrosion prophase of ultra-high strength steel 30CrMnSiNi2A in sodium chloride solutions [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2014, 29: 367
|
5 |
Yu M, Dong Y, Wang R Y, et al. Corrosion behavior of ultra-high strength steel 23Co14Ni12Cr3Mo in simulated seawater environment [J]. J. Mater. Eng., 2012, (1): 42
|
5 |
于美, 董宇, 王瑞阳 等. 23Co14Ni12Cr3Mo超高强钢在模拟海水环境中的腐蚀行为 [J]. 材料工程, 2012, (1): 42
|
6 |
Yu M, Qi J Y, Liu J H, et al. Corrosion behaviors of ultra-high strength steel 40CrNi2Si2MoVA in submerged zone of simulated seawater [J]. Corros. Prot., 2011, 32: 779
|
6 |
于美, 祁晋豫, 刘建华 等. 40CrNi2Si2MOVA超高强钢在模拟海水全浸区的腐蚀行为 [J]. 腐蚀与防护, 2011, 32: 779
|
7 |
Qiang G, Liu J H, Mei Y, et al. Influence of rust layers on the corrosion behavior of ultra-high strength steel 300M subjected to wet-dry cyclic environment with chloride and low humidity [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 139
doi: 10.1007/s40195-014-0174-8
|
8 |
Montoya P, Díaz I, Granizo N, et al. An study on accelerated corrosion testing of weathering steel [J]. Mater. Chem. Phys., 2013, 142: 220
doi: 10.1016/j.matchemphys.2013.07.009
|
9 |
Sun M, Xiao K, Dong C F, et al. Electrochemical corrosion behavior of 300M ultra high strength steel in chloride containing environment [J]. Acta Metall. Sin. (Engl. Lett.), 2010, 23: 301
|
10 |
Li T, Liu Y, Zheng C Q. Effect of rare earth elements on marine atmospheric corrosion behavior of ultrahigh-strength steel [J]. Surf. Technol., 2016, 45(3): 38
|
10 |
李涛, 刘毅, 郑传奇. 稀土对超高强度钢耐海洋大气腐蚀性能的影响 [J]. 表面技术, 2016, 45(3): 38
|
11 |
Zhong J Y, Sun M, Liu D B, et al. Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels [J]. Int. J. Miner., Metall., Mater., 2010, 17: 282
|
12 |
Tian H Y, Wang X, Cui Z Y, et al. Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater [J]. Corros. Sci., 2018, 144: 145
doi: 10.1016/j.corsci.2018.08.048
|
13 |
Tian H Y, Xin J C, Li Y, et al. Combined effect of cathodic potential and sulfur species on calcareous deposition, hydrogen permeation, and hydrogen embrittlement of a low carbon bainite steel in artificial seawater [J]. Corros. Sci., 2019, 158: 108089
doi: 10.1016/j.corsci.2019.07.013
|
14 |
Wang Z F, Yin F X, Wu L X, et al. Corrosion resistance on high strength bainitic steel and 09CuPCrNi after wet-dry cyclic conditions [J]. J. Iron Steel Res. Int., 2013, 20: 72
|
15 |
Zhai S X, Yang X Y, Yang J L, et al. Corrosion properties of quenching-partitioning-tempering steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 398
|
15 |
翟思昕, 杨幸运, 杨继兰 等. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 398
|
16 |
Cui Z Y, Wang L W, Ni H T, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates [J]. Corros. Sci., 2017, 118: 31
doi: 10.1016/j.corsci.2017.01.016
|
17 |
Shen S Y, Wang D S, Sun S B, et al. Corrosion behavior in artificial seawater of subzero treated EH40 marine steel suitable for extremely cold environments [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 151
|
17 |
沈树阳, 王东胜, 孙士斌 等. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响 [J]. 中国腐蚀与防护学报, 2020, 40: 151
|
18 |
de la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
doi: 10.1016/j.corsci.2010.10.007
|
19 |
de la Fuente D, Alcántara J, Chico B, et al. Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques [J]. Corros. Sci., 2016, 110: 253
doi: 10.1016/j.corsci.2016.04.034
|
20 |
Zhao T L, Liu K, Li Q. Comparison of the rusting behaviors of S450EW weathering steel under continuous spray and wet/dry cycling [J]. Constr. Build. Mater., 2021, 309: 125211
doi: 10.1016/j.conbuildmat.2021.125211
|
21 |
Dong B J, Liu W, Zhang T Y, et al. Corrosion failure analysis of low alloy steel and carbon steel rebar in tropical marine atmospheric environment: outdoor exposure and indoor test [J]. Eng. Failure Anal., 2021, 129: 105720
doi: 10.1016/j.engfailanal.2021.105720
|
22 |
Diaz I, Cano H, de la Fuente D, et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity [J]. Corros. Sci., 2013, 76: 348
doi: 10.1016/j.corsci.2013.06.053
|
23 |
Su H Y, Liang Y, Wei S C, et al. Couple effect of hydrostatic pressure and dissolved oxygen on corrosion behaviour of low-alloy high strength steel in 3.5 wt-% NaCl solution [J]. Corros. Eng. Sci. Technol., 2019, 54: 330
doi: 10.1080/1478422X.2019.1590959
|
24 |
Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres [J]. Corros. Sci., 2017, 115: 135
doi: 10.1016/j.corsci.2016.11.016
|
25 |
Liu Z G, Gao X H, Li J P, et al. Corrosion behaviour of low-alloy martensite steel exposed to vapour-saturated CO2 and CO2-saturated brine conditions [J]. Electrochim. Acta, 2016, 213: 842
doi: 10.1016/j.electacta.2016.08.024
|
26 |
Yuan R, Wu H B, Gu Y. Effect of alloyed Cr on corrosion behavior of low-alloy steel in wet atmosphere [J]. Mater. Corros. Werkst. Korros., 2022, 73: 918
|
27 |
Qian A, Jin P, Tan X M, et al. Corrosion and electrochemical properties of AerMet100 steel in salt fog [J]. Surf. Technol., 2018, 47 (10): 231
|
27 |
钱昂, 金平, 谭晓明 等. AerMet100钢在盐雾中的腐蚀与电化学特性 [J]. 表面技术, 2018, 47(10): 231
|
28 |
Evans U R, Taylor C A J. Mechanism of atmospheric rusting [J]. Corros. Sci., 1972, 12: 227
doi: 10.1016/S0010-938X(72)90671-3
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|