Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 87-94     CSTR: 32134.14.1005.4537.2022.035      DOI: 10.11902/1005.4537.2022.035
  研究报告 本期目录 | 过刊浏览 |
300M超高强度钢在模拟海洋环境中的腐蚀行为研究
李晗1, 刘元海2, 赵连红2, 崔中雨1()
1.中国海洋大学材料科学与工程学院 青岛 266100
2.中国特种飞行器研究所 荆门 448004
Corrosion Behavior of 300M Ultra High Strength Steel in Simulated Marine Environment
LI Han1, LIU Yuanhai2, ZHAO Lianhong2, CUI Zhongyu1()
1.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2.China Special Vehicle Research Institute, Jingmen 448004, China
全文: PDF(14467 KB)   HTML
摘要: 

采用模拟海水全浸区的浸泡实验和模拟海洋大气区的中性盐雾实验,结合宏观和微观形貌、三维形貌、腐蚀产物分析以及电化学阻抗谱 (EIS) 和动电位极化曲线 (PDP) 测试,研究了起落架用300M超高强度钢在模拟海洋环境中的腐蚀行为以及pH对其电化学行为的影响。结果表明:300M超高强度钢对pH的变化敏感,随着pH的降低,开路电位正移;阳极过程始终由活性溶解控制,阴极过程由氧还原为主转变为析氢反应为主;容抗弧半径下降,电荷转移电阻下降,腐蚀电流密度上升,腐蚀加快。失重法得出的腐蚀速率说明在盐雾环境中比人工海水环境中的腐蚀更为严重;两种环境中的腐蚀产物均主要由α-FeOOH、γ-FeOOH、α-Fe2O3和Fe3O4组成;腐蚀呈现均匀腐蚀的特征。由于氧浓度和Cl-浓度的差异导致300M超高强度钢在两种环境中的腐蚀电化学和腐蚀产物沉积过程改变,从而腐蚀行为出现差异。盐雾环境中供氧充足,同时试样表面覆盖的薄液膜促进了腐蚀产物沉积使腐蚀更为严重。

关键词 300M超高强度钢人工海水腐蚀产物电化学行为钢腐蚀    
Abstract

The corrosion performance of the 300M steel was assessed via artificial seawater immersion testing and neutral salt spray testing, aiming to simulate the operation environments, by means of electrochemical methods (i.e. OCP, EIS, PDP) and modern instruments (i.e. SEM+EDS, XRD, CLSM etc.). The results show that 300M ultra high strength steel is sensitive to the change of pH for artificial seawater. With the decrease of pH, the cathodic curve changes from oxygen reduction to hydrogen evolution process control, and the open circuit potential (OCP) moves positively, the charge transfer resistance decreases, and the corrosion current density increases. The fitting results of polarization curve and Nyquist diagram indicate that the decrease of pH leads to the acceleration of corrosion. The corrosion rate calculated by mass loss method shows that the corrosion in salt spray testing is more serious than that in artificial seawater immersion testing. However, in the above two cases the steel all presents characteristics of uniform corrosion. This was further proved by observation results of surface morphology and cross-sectional morphology of the tested steel. The corrosion products thickened with local spallation as the progress of corrosion process. The corrosion products was composed of α-FeOOH, γ-FeOOH, α-Fe2O3 and Fe3O4, the more the α-FeOOH. The difference in corrosion behavior of the 300M steel by immersion testing and salt spray testing is determined by the corrosion electrochemical reaction process and the deposition process of corrosion products. During the salt spray testing, the steel surface covered by thin electrolyte film with adequate oxygen supply, which promotes the deposition of corrosion products, thus promoting the adsorption of Cl-, and ultimately accelerating the corrosion.

Key words300M ultra high strength steel    artificial seawater    corrosion products    electrochemical behavior    steel corrosion
收稿日期: 2022-02-12      32134.14.1005.4537.2022.035
ZTFLH:  TG172  
基金资助:国家自然科学基金(51601182)
作者简介: 李晗,男,1998年生,硕士生

引用本文:

李晗, 刘元海, 赵连红, 崔中雨. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
Han LI, Yuanhai LIU, Lianhong ZHAO, Zhongyu CUI. Corrosion Behavior of 300M Ultra High Strength Steel in Simulated Marine Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 87-94.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.035      或      https://www.jcscp.org/CN/Y2023/V43/I1/87

图1  300M超高强度钢的金相组织
图2  300M超高强度钢在不同pH的人工海水中的电化学测试结果
pHRs / Ω·cm2CPEdl / Ω-1·cm-2·s-nnRct / Ω·cm2L / H·cm2
3.04.335.35×10-40.8548.42.60×10-3
4.56.361.35×10-30.65217.9---
6.06.031.74×10-30.65670.9---
8.26.951.33×10-30.61730.8---
表1  电化学阻抗谱拟合的电化学参数
图3  300M超高强度钢浸泡和盐雾腐蚀不同周期的宏观形貌
图4  300M超高强度钢浸泡和盐雾腐蚀不同周期后的XRD图谱
图5  300M超高强度钢浸泡和盐雾腐蚀不同周期后的微观形貌
图6  300M超高强度钢在人工海水和盐雾环境中腐蚀28 d后的截面形貌及元素面扫图
图7  300M超高强度钢浸泡和盐雾腐蚀不同周期后去除腐蚀产物的微观形貌
图8  300M超高强度钢浸泡和盐雾腐蚀不同周期后的三维轮廓图
1 Liu M T, Liu J H, Zhong P. Research development of corrosion resistance of ultra-high strength steel [J]. Sci. Technol. Rev., 2010, 28(9): 112
1 柳木桐, 刘建华, 钟平. 超高强度钢耐腐蚀性能研究进展 [J]. 科技导报, 2010, 28(9): 112
2 Ran X Z, Liu D, Li A, et al. Microstructure characterization and mechanical behavior of laser additive manufactured ultrahigh-strength AerMet100 steel [J]. Mater. Sci. Eng., 2016, 663A: 69
3 Malakondaiah G, Srinivas M, Rao P R. Ultrahigh-strength low-alloy steels with enhanced fracture toughness [J]. Prog. Mater. Sci., 1997, 42: 209
doi: 10.1016/S0079-6425(97)00016-9
4 Liu J H, Wen C, Yu M, et al. Manifestations in corrosion prophase of ultra-high strength steel 30CrMnSiNi2A in sodium chloride solutions [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2014, 29: 367
5 Yu M, Dong Y, Wang R Y, et al. Corrosion behavior of ultra-high strength steel 23Co14Ni12Cr3Mo in simulated seawater environment [J]. J. Mater. Eng., 2012, (1): 42
5 于美, 董宇, 王瑞阳 等. 23Co14Ni12Cr3Mo超高强钢在模拟海水环境中的腐蚀行为 [J]. 材料工程, 2012, (1): 42
6 Yu M, Qi J Y, Liu J H, et al. Corrosion behaviors of ultra-high strength steel 40CrNi2Si2MoVA in submerged zone of simulated seawater [J]. Corros. Prot., 2011, 32: 779
6 于美, 祁晋豫, 刘建华 等. 40CrNi2Si2MOVA超高强钢在模拟海水全浸区的腐蚀行为 [J]. 腐蚀与防护, 2011, 32: 779
7 Qiang G, Liu J H, Mei Y, et al. Influence of rust layers on the corrosion behavior of ultra-high strength steel 300M subjected to wet-dry cyclic environment with chloride and low humidity [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 139
doi: 10.1007/s40195-014-0174-8
8 Montoya P, Díaz I, Granizo N, et al. An study on accelerated corrosion testing of weathering steel [J]. Mater. Chem. Phys., 2013, 142: 220
doi: 10.1016/j.matchemphys.2013.07.009
9 Sun M, Xiao K, Dong C F, et al. Electrochemical corrosion behavior of 300M ultra high strength steel in chloride containing environment [J]. Acta Metall. Sin. (Engl. Lett.), 2010, 23: 301
10 Li T, Liu Y, Zheng C Q. Effect of rare earth elements on marine atmospheric corrosion behavior of ultrahigh-strength steel [J]. Surf. Technol., 2016, 45(3): 38
10 李涛, 刘毅, 郑传奇. 稀土对超高强度钢耐海洋大气腐蚀性能的影响 [J]. 表面技术, 2016, 45(3): 38
11 Zhong J Y, Sun M, Liu D B, et al. Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels [J]. Int. J. Miner., Metall., Mater., 2010, 17: 282
12 Tian H Y, Wang X, Cui Z Y, et al. Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater [J]. Corros. Sci., 2018, 144: 145
doi: 10.1016/j.corsci.2018.08.048
13 Tian H Y, Xin J C, Li Y, et al. Combined effect of cathodic potential and sulfur species on calcareous deposition, hydrogen permeation, and hydrogen embrittlement of a low carbon bainite steel in artificial seawater [J]. Corros. Sci., 2019, 158: 108089
doi: 10.1016/j.corsci.2019.07.013
14 Wang Z F, Yin F X, Wu L X, et al. Corrosion resistance on high strength bainitic steel and 09CuPCrNi after wet-dry cyclic conditions [J]. J. Iron Steel Res. Int., 2013, 20: 72
15 Zhai S X, Yang X Y, Yang J L, et al. Corrosion properties of quenching-partitioning-tempering steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 398
15 翟思昕, 杨幸运, 杨继兰 等. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 398
16 Cui Z Y, Wang L W, Ni H T, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates [J]. Corros. Sci., 2017, 118: 31
doi: 10.1016/j.corsci.2017.01.016
17 Shen S Y, Wang D S, Sun S B, et al. Corrosion behavior in artificial seawater of subzero treated EH40 marine steel suitable for extremely cold environments [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 151
17 沈树阳, 王东胜, 孙士斌 等. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响 [J]. 中国腐蚀与防护学报, 2020, 40: 151
18 de la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
doi: 10.1016/j.corsci.2010.10.007
19 de la Fuente D, Alcántara J, Chico B, et al. Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques [J]. Corros. Sci., 2016, 110: 253
doi: 10.1016/j.corsci.2016.04.034
20 Zhao T L, Liu K, Li Q. Comparison of the rusting behaviors of S450EW weathering steel under continuous spray and wet/dry cycling [J]. Constr. Build. Mater., 2021, 309: 125211
doi: 10.1016/j.conbuildmat.2021.125211
21 Dong B J, Liu W, Zhang T Y, et al. Corrosion failure analysis of low alloy steel and carbon steel rebar in tropical marine atmospheric environment: outdoor exposure and indoor test [J]. Eng. Failure Anal., 2021, 129: 105720
doi: 10.1016/j.engfailanal.2021.105720
22 Diaz I, Cano H, de la Fuente D, et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity [J]. Corros. Sci., 2013, 76: 348
doi: 10.1016/j.corsci.2013.06.053
23 Su H Y, Liang Y, Wei S C, et al. Couple effect of hydrostatic pressure and dissolved oxygen on corrosion behaviour of low-alloy high strength steel in 3.5 wt-% NaCl solution [J]. Corros. Eng. Sci. Technol., 2019, 54: 330
doi: 10.1080/1478422X.2019.1590959
24 Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres [J]. Corros. Sci., 2017, 115: 135
doi: 10.1016/j.corsci.2016.11.016
25 Liu Z G, Gao X H, Li J P, et al. Corrosion behaviour of low-alloy martensite steel exposed to vapour-saturated CO2 and CO2-saturated brine conditions [J]. Electrochim. Acta, 2016, 213: 842
doi: 10.1016/j.electacta.2016.08.024
26 Yuan R, Wu H B, Gu Y. Effect of alloyed Cr on corrosion behavior of low-alloy steel in wet atmosphere [J]. Mater. Corros. Werkst. Korros., 2022, 73: 918
27 Qian A, Jin P, Tan X M, et al. Corrosion and electrochemical properties of AerMet100 steel in salt fog [J]. Surf. Technol., 2018, 47 (10): 231
27 钱昂, 金平, 谭晓明 等. AerMet100钢在盐雾中的腐蚀与电化学特性 [J]. 表面技术, 2018, 47(10): 231
28 Evans U R, Taylor C A J. Mechanism of atmospheric rusting [J]. Corros. Sci., 1972, 12: 227
doi: 10.1016/S0010-938X(72)90671-3
[1] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[2] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[3] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[4] 周志平, 吴大康, 张宏福, 张磊, 李明星, 张志鑫, 钟显康. 高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[5] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[6] 张佳欢, 崔中雨, 范林, 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[7] 王小红, 李子硕, 唐御峰, 谭浩, 蒋焰罡. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1043-1050.
[8] 王腾宇, 张正贵, 陆卫中, 吴希革. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为[J]. 中国腐蚀与防护学报, 2022, 42(6): 929-938.
[9] 薛芳, 刘两雨, 谭龙. Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[10] 王通, 孟惠民, 葛鹏飞, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[11] 尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[12] 王家明, 杨昊东, 杜敏, 彭文山, 陈翰林, 郭为民, 蔺存国. B10铜镍合金在高浓度NH4+污染海水中腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 609-616.
[13] 陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[14] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[15] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.