Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (1): 135-142     CSTR: 32134.14.1005.4537.2022.006      DOI: 10.11902/1005.4537.2022.006
  研究报告 本期目录 | 过刊浏览 |
SiCp尺寸对铸态AZ91镁合金显微组织与腐蚀性能的影响
吕鑫1, 邓坤坤1,2(), 王翠菊1, 聂凯波1, 史权新1, 梁伟1,2
1.太原理工大学材料科学与工程学院 太原 030024
2.太原理工大学 先进材料界面科学与工程教育部重点实验室 太原 030024
Effect of SiCp Size on Microstructure and Corrosion Properties of Cast AZ91 Mg-alloys
LV Xin1, DENG Kunkun1,2(), WANG Cuiju1, NIE Kaibo1, SHI Quanxin1, LIANG Wei1,2
1.School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2.Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
全文: PDF(17910 KB)   HTML
摘要: 

采用半固态搅拌铸造方法制备出亚微米SiCp增强AZ91复合材料 (S1)、微米SiCp增强AZ91复合材料 (M10) 以及双尺度SiCp增强AZ91复合材料 (S1+M9)。利用OM、SEM、XRD、浸泡法、电化学测试等研究了不同尺寸SiCp对铸态AZ91镁合金显微组织与腐蚀性能的影响。结果表明,SiCp的添加可以显著细化AZ91镁合金中半连续网状Mg17Al12相,这归因于SiCp对Mg17Al12相的异质形核作用。Mg17Al12相能够包裹亚微米SiCp析出,并且可以依附微米SiCp表面析出。通过对比含有相同SiCp体积分数的S1+M9和M10,可以看出S1+M9的耐蚀性相比M10显著降低,表明当SiCp含量一定时,SiCp的尺寸从微米变为亚微米会导致AZ91镁合金的耐蚀性降低。

关键词 AZ91镁合金SiCp显微组织腐蚀性能    
Abstract

The sub-micron SiCp, micron SiCp and dual-scale SiCp reinforced AZ91 Mg-alloy based composites, namely composites (S1), (M10), and (S1+M9) respectively, were prepared by semi-solid stirring casting method. They were then characterized by means of optical microscope, scanning electron microscope, X-ray diffraction, immersion method, and electrochemical test, etc in terms of the effect of the particle size of SiCp on the microstructure and corrosion properties of the as-cast AZ91 Mg-alloys. The results show that the addition of SiCp can refine significantly the semi-continuous network-like Mg17Al12 phase in the AZ91 Mg-alloy, which is attributed to the heterogeneous nucleation effect of SiCp on the Mg17Al12 phase. The Mg17Al12 phase can be precipitated as Mg17Al12 particles with core of sub-micron SiCp, and/or directly on the surface of micron SiCp. By comparing the two composites reinforced with the same volume fraction of SiCp, it can be found that the corrosion resistance of S1+M9 is significantly lower than that of M10, indicating that when the content of SiCp is constant, changing the size of SiCp from micron to sub-micron will reduce the corrosion resistance of the composites.

Key wordsAZ91 Mg-alloy    SiCp    microstructure    corrosion performance
收稿日期: 2022-01-04      32134.14.1005.4537.2022.006
ZTFLH:  TG174  
基金资助:国家自然科学基金(52001223);国家自然科学基金(51771128);国家自然科学基金(51771129)
作者简介: 吕鑫,男,1995年生,硕士生

引用本文:

吕鑫, 邓坤坤, 王翠菊, 聂凯波, 史权新, 梁伟. SiCp尺寸对铸态AZ91镁合金显微组织与腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 135-142.
Xin LV, Kunkun DENG, Cuiju WANG, Kaibo NIE, Quanxin SHI, Wei LIANG. Effect of SiCp Size on Microstructure and Corrosion Properties of Cast AZ91 Mg-alloys. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 135-142.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.006      或      https://www.jcscp.org/CN/Y2023/V43/I1/135

图1  不同材料的OM和低倍SEM图
图2  不同材料的XRD图
图3  不同材料的高倍SEM图及EDS面扫图
PositionsMgAlSiZnCaMn
A78.120.1---0.80.80.2
B64.79.125.80.30.1---
D25.23341.50.10.2---
E72.710.915.60.50.3---
表1  对应图3中标记点的EDS结果
图4  不同材料的析氢量和析氢速率随浸泡时间的变化及失重腐蚀速率图
图5  不同材料在3.5%NaCl溶液中的阻抗图谱
MaterialsRs / Ω·cm2CPE1 / 10-6Sn ·Ω-1·cm-2n1Rct / Ω·cm2CPE2 / 10-5Sn ·Ω-1·cm2n2Rf / Ω·cm2RL / Ω·cm2L / HRp / Ω·cm2
S18.3229.5050.905518764.5250.8962153.8420.287.872029.8
AZ918.8437.6110.92471689412.60.250571.13.489×101032401760.1
M1010.248.0810.9254678.221.730.52120.01421.999.22678.2
S1+M914.728.7020.916387.3201.80.073887.671.686×10753.82475
表2  不同材料浸泡0.5 h后所得阻抗谱的电化学拟合参数
MaterialsEcorr / Vβc / mV·dec-1Icorr / µA·cm-2
S1-1.471-97.22±1.352.24
AZ91-1.520-102.52±1.475.70
M10-1.491-170.45±0.3240.98
S1+M9-1.523-158.20±0.3058.04
表3  对应图6极化曲线拟合结果
图6  不同材料在3.5%NaCl溶液中的极化曲线
图7  不同材料在3.5%NaCl溶液中短时间浸泡后未去除腐蚀产物的腐蚀形貌图
图8  不同材料在3.5%NaCl溶液中浸泡7 d后去除腐蚀产物的腐蚀截面图
图9  相同体积分数不同尺寸SiCp增强AZ91基复合材料的腐蚀机制示意图
1 Wei Y H, Xu B S. Theory and Practice of Magnesium Alloy Corrosion Protection [M]. Beijing: Metallurgical Industry Press, 2007
1 卫英慧, 许并社. 镁合金腐蚀防护的理论与实践 [M]. 北京: 冶金工业出版社, 2007
2 Zheng L, Wang M T, Yu B Y. Research progress of cold spraying coating technology for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 22
2 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 22
3 Shao Y H, Wang J L, Zhang W, et al. High temperature oxidation behavior of a heat resistant magnesium alloy Mg-14Gd-2.3Zn-Zr [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 73
3 邵银华, 王金龙, 张伟 等. 耐热镁合金Mg-14Gd-2.3Zn-Zr的高温氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 73
4 Sun X F, Wang C J, Deng K K, et al. Aging behavior of AZ91 matrix influenced by 5 μm SiCp: investigation on the microstructure and mechanical properties [J]. J. Alloy. Compd., 2017, 727: 1263
doi: 10.1016/j.jallcom.2017.08.198
5 Nie K B, Wang X J, Hu X S, et al. Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration [J]. Mater. Sci. Eng., 2011, 528A: 5278
6 Tiwari S, Balasubramaniam R, Gupta M. Corrosion behavior of SiC reinforced magnesium composites [J]. Corros. Sci., 2007, 49: 711
doi: 10.1016/j.corsci.2006.05.047
7 Zhang C Y, Zhang T, Shao Y W, et al. Corrosion behavior of a hot extruded magnesium alloy AZ91 based composite SiCP/AZ91 [J]. Corros. Sci. Prot. Technol., 2014, 26: 99
7 张春艳, 张涛, 邵亚薇 等. 热挤压态SiCp/AZ91镁基复合材料腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2014, 26: 99
8 Ganguly S, Mondal A K, Sarkar S, et al. Improved corrosion response of squeeze-cast SiC nanoparticles reinforced AZ91-2.0Ca-0.3Sb alloy [J]. Corros. Sci., 2020, 166: 108444
doi: 10.1016/j.corsci.2020.108444
9 Singla S, Kang A S, Sidhu T S. Characterization and electrochemical corrosion behaviour of FSPed WE43/nano-SiC surface composite [J]. Mater. Today Proc., 2020, 26: 3138
10 Deng K K, Wang X J, Wu Y W, et al. Effect of particle size on microstructure and mechanical properties of SiCp/AZ91 magnesium matrix composite [J]. Mater. Sci. Eng., 2012, 543A: 158
11 Zhou S S, Deng K K, Li J C, et al. Effects of volume ratio on the microstructure and mechanical properties of particle reinforced magnesium matrix composite [J]. Mater. Des., 2014, 63: 672
doi: 10.1016/j.matdes.2014.07.004
12 Wu P P, Deng K K, Nie K B, et al. Corrosion resistance of AZ91 Mg alloy modified by high-current pulsed electron beam [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 218
doi: 10.1007/s40195-018-0798-1
13 Ma X L, Prameela S E, Yi P, et al. Dynamic precipitation and recrystallization in Mg-9wt.%Al during equal-channel angular extrusion: a comparative study to conventional aging [J]. Acta Mater., 2019, 172: 185
doi: 10.1016/j.actamat.2019.04.046
14 Liu Y, Cheng W L, Liu Y H, et al. Effect of alloyed Ca on the microstructure and corrosion behavior of extruded Mg-Bi-Al-based alloys [J]. Mater. Charact., 2020, 163: 110292
doi: 10.1016/j.matchar.2020.110292
15 Zhu Y X, Song G L, Wu P P, et al. A burnished and Al-alloyed magnesium surface with improved mechanical and corrosion properties [J]. Corros. Sci., 2021, 184: 109395
doi: 10.1016/j.corsci.2021.109395
16 Hagihara K, Okubo M, Yamasaki M, et al. Crystal-orientation-dependent corrosion behaviour of single crystals of a pure Mg and Mg-Al and Mg-Cu solid solutions [J]. Corros. Sci., 2016, 109: 68
doi: 10.1016/j.corsci.2016.03.019
17 Zhang Z, Wu G H, Atrens A, et al. Influence of trace As content on the microstructure and corrosion behavior of the AZ91 alloy in different metallurgical conditions [J]. J. Magnes. Alloys, 2020, 8: 301
doi: 10.1016/j.jma.2019.12.004
18 Yin S Q, Duan W C, Liu W H, et al. Influence of specific second phases on corrosion behaviors of Mg-Zn-Gd-Zr alloys [J]. Corros. Sci., 2020, 166: 108419
doi: 10.1016/j.corsci.2019.108419
19 Wang Z Q, Xu C X, Yang L J, et al. Microstructure and corrosion resistance of medical degradable Mg-2Y-1Zn-xZr alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 113
19 王中琪, 许春香, 杨丽景 等. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 113
20 Birbilis N, Cavanaugh M K, Sudholz A D, et al. A combined neural network and mechanistic approach for the prediction of corrosion rate and yield strength of magnesium-rare earth alloys [J]. Corros. Sci., 2011, 53: 168
doi: 10.1016/j.corsci.2010.09.013
21 Zhao M C, Liu M, Song G L, et al. Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91 [J]. Corros. Sci., 2008, 50: 1939
doi: 10.1016/j.corsci.2008.04.010
22 Wu P P, Song G L, Zhu Y X, et al. The corrosion of Al-supersaturated Mg matrix and the galvanic effect of secondary phase nanoparticles [J]. Corros. Sci., 2021, 184: 109410
doi: 10.1016/j.corsci.2021.109410
[1] 肖文涛, 刘静, 彭晶晶, 张弦, 吴开明. 两种电弧喷涂涂层在中性盐雾环境下的耐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[2] 罗维华, 王海涛, 于林, 许实, 刘朝信, 郭宇, 王廷勇. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[3] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[4] 倪雅, 施方长, 戚继球. Ce添加对Zn-0.6Cu-0.3Ti合金组织与耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[5] 刘云, 任延杰, 陈荐, 周立波, 邱玮, 黄伟颖, 牛焱. 质子交换膜燃料电池不锈钢双极板表面Cr2AlC涂层的制备与耐蚀性能[J]. 中国腐蚀与防护学报, 2023, 43(1): 62-68.
[6] 张佳欢, 崔中雨, 范林, 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[7] 刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
[8] 胡雄鑫, 张弦, 刘静, 吴开明, 林安. 无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[9] 王嘉琪, 李莉, 刘婷婷. 工业建筑屋面用铝锰合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
[10] 张恒康, 黄峰, 徐云峰, 袁玮, 邱耀, 刘静. FeCrMn1.3NiAlx高熵合金显微组织演变及电化学钝化行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 218-226.
[11] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[12] 石践, 胡学文, 张道刘, 曹卉丹, 何博, 浦红, 郭锐, 汪飞. 显微组织对高强耐候钢腐蚀性能的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[13] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[14] 王佳, 刘晓勇, 高灵清, 查小琴, 罗先甫, 张文利, 张恒坤. α型Ti70合金的吸氢行为研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 549-554.
[15] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.