Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 995-1001          DOI: 10.11902/1005.4537.2021.264
  研究报告 本期目录 | 过刊浏览 |
三元Co-Ni-Al合金在800~1000 ℃纯氧中的氧化行为研究
任延杰1, 吕云蕾1, 戴汀1, 郭晓慧2, 陈荐1, 周立波1, 邱玮1, 牛焱1()
1.长沙理工大学能源与动力工程学院 长沙 410076
2.中国科技大学材料科学与工程学院 沈阳 110016
Oxidation Behavior of Ternary Alloys Co-20Ni-3Al and Co-20Ni-5Al in 105 Pa O2 Atmosphere at 800-1000 ℃
REN Yanjie1, LV Yunlei1, DAI Ting1, GUO Xiaohui2, CHEN Jian1, ZHOU Libo1, QIU Wei1, NIU Yan1()
1. Department of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410076, China
2. School of Materials & Engineering, University of Science & Technology of China, Shenyang 110016, China
引用本文:

任延杰, 吕云蕾, 戴汀, 郭晓慧, 陈荐, 周立波, 邱玮, 牛焱. 三元Co-Ni-Al合金在800~1000 ℃纯氧中的氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 995-1001.
Yanjie REN, Yunlei LV, Ting DAI, Xiaohui GUO, Jian CHEN, Libo ZHOU, Wei QIU, Yan NIU. Oxidation Behavior of Ternary Alloys Co-20Ni-3Al and Co-20Ni-5Al in 105 Pa O2 Atmosphere at 800-1000 ℃[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 995-1001.

全文: PDF(8613 KB)   HTML
摘要: 

研究了三元Co-20Ni-xAl (x=3,5,质量分数,%) 合金在纯氧中800~1000 ℃下20 h的氧化行为。氧化后,两种合金表面均生成了双层结构外氧化膜,外层膜主要由CoO与少量NiO组成,而内层膜则为CoO与尖晶石的混合物,外氧化膜下为铝的内氧化区。合金的氧化速率随氧化温度的升高而增大;合金中Al含量由3%增加到5%,Co-20Ni-Al合金的氧化速率随之下降,但5%Al仍不足以使合金表面生成保护性的单一氧化铝膜。

关键词 Co-Ni-Al合金高温氧化氧化动力学保护性氧化膜    
Abstract

The oxidation behavior of two ternary alloys Co-20Ni-xAl (x=3, 5, mass fraction, %) was studied in 105 Pa O2 at 800-1000 ℃ for 20 h. After oxidation, the two alloys all formed double-layered external scales composed of an outer layer of CoO (with a small amount of NiO) and an inner layer of mixtures CoO and spinels, usually followed by a region of internal oxidation of Al. The oxidation rate of the alloys increases with the increasing temperature. When the increase of Al content from 3% to 5%, the oxidation rate of Co-Ni-Al alloys is reduced, however, the Al content of 5% is not yet sufficient to ensure the formation of a protective external alumina scale on the alloy. In fact, the experimental results may be well interpreted by the prediction according to the theoretical mode related to the reaction of binary alloy with single oxidant by simplifying the ternary Co-Ni-Al alloys as binary (Co-Ni)-Al alloys.

Key wordsCo-Ni-Al alloy    high temperature oxidation    oxidation kinetics    protective scale
收稿日期: 2021-09-29     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51771034);国家自然科学基金(52171066);湖南省自然科学基金(2020JJ4610);湖南省研究生科研创新项目(CX20200871);和长沙理工大学研究生科研创新项目(CX2020SS66)
作者简介: 任延杰,女,1978年生,博士,教授
Nominal mass fraction / %Nominal atomic fraction / %Actual mass fraction / %
Co-20Ni-3AlCo-19.39Ni-6.47AlCo-20.0Ni-3.06Al
Co-20Ni-5AlCo-19.24Ni-10.22AlCo-20.3Ni-4.96Al
表1  两种Co-20Ni-Al合金的设计成分和由ICP光谱技术测得的实际成分
图1  800~1000 ℃下Co-Ni-Al合金三元等温相图以及两种Co-20Ni-Al合金的金相组织
图2  两种Co-20Ni-Al合金在800,900和1000 ℃下105 Pa O2中氧化20 h的动力学曲线
Temperature / ℃AlloyParabolic stages
800Co-20Ni-3Al2.18×10-10 (0.25-12.5 h)4.92×10-10 (12.5-20 h)
Co-20Ni-5Al1.57×10-10 (0.25-20 h)
900Co-20Ni-3Al4.28×10-9 (0.25-3 h)4.03×10-8 (3-20 h)
Co-20Ni-5Al1.97×10-9 (0.25-20 h)
1000Co-20Ni-3Al3.85×10-7 (0.6-4.5 h)1.77×10-8 (4.5-20 h)
Co-20Ni-5Al1.31×10-8 (0-20 h)
表2  两种Co-20Ni-Al合金在800,900和1000 ℃下105 Pa O2中氧化20 h动力学曲线的抛物线速率常数
图3  两种Co-20Ni-Al合金在800,900和1000 ℃下105 Pa O2中氧化20 h的动力学曲线
图4  两种Co-20Ni-Al合金在800、900和1000 ℃下105 Pa O2中氧化20 h后的截面形貌
AlloyOxidation zone800 ℃900 ℃1000 ℃
Co-20Ni-3AlEOZ47.72383.4795.56-1010
IOZ5.6810.9856.78
Co-20Ni-5AlEOZ24.6479.14263.72
IOZ20.880.4528.79-95.23
表3  两种Co-20Ni-Al合金在800,900和1000 ℃下105 Pa O2中氧化20 h形成的氧化区厚度
[1] Yuan F H, Sun X F, Guan H R, et al. Cyclic oxidation behavior of a Cobalt-base superalloy [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 115
[1] (袁福河, 孙晓峰, 管恒荣 等. 钴基高温合金的循环氧化行为研究 [J]. 中国腐蚀与防护学报, 2002, 22: 115)
[2] Singh P, Birks N. The attack of Co-Cr alloys by Ar-SO2 atmospheres [J]. Oxid. Met., 1979, 13: 457
doi: 10.1007/BF00605110
[3] Irving G N, Stringer J, Whittle D P. Effect of the possible fcc stabilizers Mn, Fe, and Ni on the high-temperature oxidation of Co-Cr alloys [J]. Oxid. Met., 1974, 8: 393
doi: 10.1007/BF00603389
[4] Biegun T, Brückman A, Mrowec S. High-temperature sulfide corrosion of cobalt-chromium alloys [J]. Oxid. Met., 1978, 12: 157
doi: 10.1007/BF00740257
[5] Przybylski K, Szwagierczak D. Kinetics and mechanism of high-temperature oxidation of dilute cobalt-chromium alloys [J]. Oxid. Met., 1982, 17: 267
doi: 10.1007/BF00738387
[6] Fryt E M, Wood G C, Stott F H, et al. Influence of prior internal oxidation on the oxidation of dilute Co-Cr alloys in oxygen [J]. Oxid. Met., 1985, 23: 77
doi: 10.1007/BF01095808
[7] Wang L, Xiang J H, Zhang H H, et al. High temperature oxidation behavior of three Co-20Re-xCr alloys in 3.04 ×10-5 Pa oxygen at 1000 and 1100 ℃ [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 83
[7] (王玲, 向军淮, 张洪华 等. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为 [J]. 中国腐蚀与防护学报, 2019, 39: 83)
[8] Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales [J]. Oxid. Met., 1995, 44: 113
doi: 10.1007/BF01046725
[9] Yu H, Ukai S, Hayashi S, et al. Effect of Al content on the high-temperature oxidation of Co-20Cr-(5, 10)Al oxide dispersion strengthened superalloys [J]. Corros. Sci., 2017, 118: 49
doi: 10.1016/j.corsci.2017.01.015
[10] Wallwork G R, Hed A Z. Mapping of the oxidation products in the ternary Co-Cr-Al system [J]. Oxid. Met., 1971, 3: 213
doi: 10.1007/BF00603522
[11] Gao B, Wang L, Liu Y, et al. Corrosion behavior of new type co-based superalloys with different Ni contents [J]. Corros. Rev., 2017, 35: 455
doi: 10.1515/corrrev-2017-0003
[12] Weiser M, Galetz M C, Chater R J, et al. Growth mechanisms of oxide scales on two-phase Co/Ni-base model alloys between 800 ℃ and 900 ℃ [J]. J. Electrochem. Soc., 2020, 167: 021504
[13] Gao B, Wang L, Liu Y, et al. High temperature oxidation behaviour of γ′-strengthened Co-based superalloys with different Ni addition [J]. Corros. Sci., 2019, 157: 109
doi: 10.1016/j.corsci.2019.05.036
[14] Preece A, Lucas G. The high-temperature oxidation of some cobalt-base and nickel-base alloys [J]. J. Inst. Met., 1952, 81: 219
[15] Wood G C, Wright I G, Ferguson J M. The oxidation of Ni and Co and of Ni/Co alloys at high temperatures [J]. Corros. Sci., 1965, 5: 645
doi: 10.1016/S0010-938X(65)90203-9
[16] Rapp R A. The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys [J]. Acta Metall., 1961, 9: 730
doi: 10.1016/0001-6160(61)90103-1
[17] Liu L L. High temperature corrosion in oxidizing and/or sulfidizing atmospheres of Fe-xSi alloys and effect of Cr addition with grain refinement [D]. Shenyang: Institute of Metal Research Chinese Academy of Sciences, 2014
[17] (刘兰兰. Fe-xSi合金的高温氧化、氧化-硫化腐蚀及第三组织元和微晶化的影响[D]. 沈阳: 中国科学院金属研究所, 2014)
[18] Wu W T, Yan R Y, Niu Y, et al. The oxidation of a Co-15wt%Y alloy under low oxygen pressures at 600-800 ℃ [J]. Corros. Sci., 1997, 39: 1831
doi: 10.1016/S0010-938X(97)00057-7
[19] Green A, Swindells N. Measurement of interdiffusion coefficients in Co-Al and Ni-Al systems between 1000 and 1200 ℃ [J]. Mater. Sci. Technol., 2013, 1: 101
doi: 10.1179/mst.1985.1.2.101
[1] 王爽, 王资兴, 程晓农, 罗锐. 稀土La对钴基高温合金GH51881100℃下空气中氧化行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 221-228.
[2] 冯抗抗, 任延杰, 吕云蕾, 周梦妮, 陈荐, 牛焱. Si含量对四元Fe-20Ni-20Cr-ySi合金在900℃下氧化行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 100-106.
[3] 任岩, 张鑫涛, 盖欣, 徐敬军, 张伟, 陈勇, 李美栓. 四元MAX(Cr2/3Ti1/3)3AlC2 在高温空气以及水蒸气气氛中的氧化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[4] 於琛钧, 张天翼, 张乃强, 朱忠亮. 组织老化对P92钢在超临界水中氧化行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[5] 刘姝妤, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 段海涛, 夏思瑶, 夏春怀. K444合金表面CVD铝化物涂层的高温氧化和固态Na2SO4诱导的空气腐蚀[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[6] 贺南开, 王永欣, 周升国, 周大朋, 李金龙. Inconel 718合金在580 ℃下水蒸气环境中的氧化行为及摩擦学性能[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[7] 刘欢欢, 刘光明, 李富天, 孟令奇, 夏侯俊招, 顾佳磊. TP439不锈钢在800 ℃高温水蒸气中的初期氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
[8] 杨依凡, 孙文瑶, 陈明辉, 王金龙, 王福会. 镍基单晶高温合金N5及其纳米晶涂层在900 ℃下O2和O2+20%H2O气氛中的氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 55-61.
[9] 解磊鹏, 陈明辉, 王金龙, 王福会. 放电等离子烧结超细晶ODS镍基合金的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[10] 裴书博, 万冬阳, 周萍, 曹国钦, 胡俊华. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[11] 张勤, 梁涛沙, 王文, 赵朗朗, 姜岳峰. 纳米晶Ni-12Cr合金800 ℃高温氧化动力学和氧化膜结构演化[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
[12] 王明好, 王欢, 刘叡, 孟凡帝, 刘莉, 王福会. 基于深度学习方法的N5/NiCrAlY涂层图像识别的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.
[13] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[14] 李玲, 杜汐然, 曲品权, 李建呈, 王金龙, 古岩, 张甲, 陈明辉, 王福会. 真空热处理对多弧离子镀NiCoCrAlY涂层高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[15] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.