Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 1065-1069          DOI: 10.11902/1005.4537.2021.348
  研究报告 本期目录 | 过刊浏览 |
1050铝合金在通电工况下大气腐蚀的腐蚀特征
夏晓健1, 万芯瑗1, 高燕2, 王启伟2, 严康骅1, 陈云翔1, 洪毅成1, 张俊喜2()
1.国网福建省电力有限公司电力科学研究院 福州 350007
2.上海电力大学 电力材料防护与先进材料上海市重点实验室 上海 200090
Corrosion Characteristics of Atmospheric Corrosion of 1050 Al-alloy under Power-on Condition
XIA Xiaojian1, WAN Xinyuan1, GAO Yan2, WANG Qiwei2, YAN Kanghua1, CHEN Yunxiang1, HONG Yicheng1, ZHANG Junxi2()
1. State Grid Fujian Electric Power Research Institute, Fuzhou 350007, China
2. Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
引用本文:

夏晓健, 万芯瑗, 高燕, 王启伟, 严康骅, 陈云翔, 洪毅成, 张俊喜. 1050铝合金在通电工况下大气腐蚀的腐蚀特征[J]. 中国腐蚀与防护学报, 2022, 42(6): 1065-1069.
Xiaojian XIA, Xinyuan WAN, Yan GAO, Qiwei WANG, Kanghua YAN, Yunxiang CHEN, Yicheng HONG, Junxi ZHANG. Corrosion Characteristics of Atmospheric Corrosion of 1050 Al-alloy under Power-on Condition[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1065-1069.

全文: PDF(3017 KB)   HTML
摘要: 

采用盐雾试验、电化学测试结合扫描电镜 (SEM)、X射线衍射 (XRD) 等方法,研究了模拟通电工况下海洋大气环境中1050铝合金的腐蚀行为特征。结果表明:通电条件对1050铝合金的腐蚀具有显著影响,随着通电电流不断增加,1050铝合金样品腐蚀失重值逐渐增大;1050铝合金样品的腐蚀电流密度逐渐增大。通过腐蚀产物的结构和形貌对模拟通电工况下海洋大气环境中1050铝合金的腐蚀行为特征进行了分析。

关键词 1050铝合金大气腐蚀通电工况输电网    
Abstract

The corrosion behavior of 1050 Al-alloy under current-carrying condition was studied by means of salt spray test, electrochemical measurement, scanning electron microscope (SEM) and X-ray diffraction (XRD). The results showed that the current condition had a significant effect on the corrosion of 1050 Al-alloy. Both of the corrosion current density and mass loss rate of the sample increased gradually with the increment of applied current density.The corrosion behavior of 1050 Al-alloy in marine atmosphere was characterized in simulated electrification condition through the analysis of the structure and morphology of corrosion products.

Key words1050 Al-alloy    atmospheric corrosion    alternating current    transmission network
收稿日期: 2021-12-04     
ZTFLH:  TG172  
基金资助:国网福建省电力有限公司科技项目(521304200005)
作者简介: 夏晓健,男,1988年生,博士,高级工程师
图1  1050铝合金腐蚀速率随电流变化趋势图
图2  1050铝合金通过不同电流腐蚀产物的XRD结果
图3  1050铝合金通不同电流后的表面SEM形貌
图4  1050铝合金在不同电流下的动电位极化曲线及腐蚀电流密度随电流变化均值图
i / AEcorr / mVIcorr / A·cm-2Βa / mV-Βc / mV
0-765.767.234×10-613.16140.88
10-757.618.409×10-614.05117.36
20-762.111.008×10-522.71133.85
30-778.421.074×10-529.91253.89
40-777.372.023×10-530.36639.98
表1  不同电流下1050铝合金极化曲线动力学参数拟合
[1] Huang X. Analysis on the selection of aluminum alloy cable [J]. Petrochem. Des., 2014, 31(1): 5
[1] (黄旭. 浅析铝合金电缆的选用 [J]. 石油化工设计, 2014, 31(1): 5)
[2] Xia X J, Cai J B, Lin D Y, et al. Corrosion status, corrosion mechanisms and anti-corrosion measures in coastal substations [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 697
[2] (夏晓健, 蔡建宾, 林德源 等. 沿海变电站设备腐蚀状况及其腐蚀机理与防护 [J]. 中国腐蚀与防护学报, 2021, 41: 697)
[3] Shu K. The type selection and optimization research on aluminum alloy transmission towers [D]. Harbin: Harbin Institute of Technology, 2011
[3] (束康. 高强铝合金输电塔选型及优化研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011)
[4] Xu W S. Application of aluminum alloy conductor in building electrical engineering [J]. Anhui Build., 2017, 24(3): 213
[4] (徐旺生. 铝合金电缆在建筑电气工程中的应用探析 [J]. 安徽建筑, 2017, 24(3): 213)
[5] Lin D Y. Corrosion behavior of al-alloy 6082-T6 in simulated marine atmospheric environment [J]. Corros. Sci. Prot. Technol., 2017, 29: 499
[5] (林德源. 6082-T6铝合金在模拟沿海大气环境下的腐蚀行为和腐蚀机理 [J]. 腐蚀科学与防护技术, 2017, 29: 499)
[6] Chen Y X, Ni Q Z, Lin D Y, et al. Research progress in corrosion and service life prediction of metal materials in grid equipment under atmospheric environment [J]. Mater. Rev., 2016, 30(21): 89
[6] (陈云翔, 倪清钊, 林德源 等. 大气环境下电网设备金属材料的腐蚀及服役寿命预测研究进展 [J]. 材料导报, 2016, 30(21): 89)
[7] Liu Y J, Wang Z Y, Ke W. Corrosion behavior of 2024-T3 aluminum alloy in simulated marine atmospheric environment [J]. Chin. J. Nonferrous Met., 2013, 23: 1208
[7] (刘艳洁, 王振尧, 柯伟. 2024-T3铝合金在模拟海洋大气环境中的腐蚀行为 [J]. 中国有色金属学报, 2013, 23: 1208)
[8] Li L, Chen C Y, Yang F, et al. Corrosion behavior of 0359 aluminum alloy in marine atmosphere [J]. Hot Work. Technol., 2013, 42(2): 28
[8] (李玲, 陈朝轶, 杨帆 等. 0359铝合金海洋性大气腐蚀行为 [J]. 热加工工艺, 2013, 42(2): 28)
[9] Wang Z Y, Li Q X, Wang C, et al. Corrosion behaviors of Al alloy LC4 in Geermu salt lake atmosphere [J]. Chin. J. Nonferrous Met., 2007, 17: 24
[9] (王振尧, 李巧霞, 汪川 等. LC4铝合金在格尔木盐湖大气环境中的腐蚀行为 [J]. 中国有色金属学报, 2007, 17: 24)
[10] Zhang Y G, Chen Y L, Zhang Y, et al. Initial corrosion behavior and mechanism of 7B04 aluminum alloy under acid immersion and salt spray environments [J]. Chin. J. Aeronaut., 2022, 35: 277
doi: 10.1016/j.cja.2021.05.005
[11] Yang L, Zhao Q Y, He J, et al. Corrosion behavior of 6061 aluminum alloy in simulative industry-marine atmospheric environment [J]. Mater. China, 2018, 37: 28
[11] (杨浪, 赵起越, 贺建 等. 6061铝合金在模拟工业-海洋大气环境下的腐蚀研究 [J]. 中国材料进展, 2018, 37: 28)
[12] Zhao F, Jin D, Li H Y. Accelerated corrosion behaviors of aluminum alloy 2A12 in simulated coastal industrial atmosphere environment [J]. Corros. Prot., 2021, 42(4): 19
[12] (赵菲, 靳东, 李红英. 模拟沿海工业大气环境中2A12铝合金的加速腐蚀行为 [J]. 腐蚀与防护, 2021, 42(4): 19)
[13] Natesan M, Venkatachari G, Palaniswamy N. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India [J]. Corros. Sci., 2006, 48: 3584
doi: 10.1016/j.corsci.2006.02.006
[14] Vera R, Delgado D, Rosales B M. Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 1. Aluminium and AA6201 alloy [J]. Corros. Sci., 2006, 48: 2882
doi: 10.1016/j.corsci.2005.11.012
[15] Vilche J R, Varela F E, Acuña G, et al. A survey of Argentinean atmospheric corrosion: I—Aluminium and zinc samples [J]. Corros. Sci., 1995, 37: 941
doi: 10.1016/0010-938X(95)00006-6
[16] Dan Z H, Takigawa S, Muto I, et al. Applicability of constant dew point corrosion tests for evaluating atmospheric corrosion of aluminium alloys [J]. Corros. Sci., 2011, 53: 2006
doi: 10.1016/j.corsci.2011.02.027
[17] Li L, Su X. Corrosion behavior of aluminum alloy 1050A during cyclic wet-dry immersion test in simulated marine atmospheric environment [J]. Corros. Prot., 2014, 35: 367
[17] (李丽, 苏霄. 1050A铝合金模拟海洋大气环境腐蚀行为的中性盐雾试验 [J]. 腐蚀与防护, 2014, 35: 367)
[18] Abdulstaar M, Mhaede M, Wagner L, et al. Corrosion behaviour of Al 1050 severely deformed by rotary swaging [J]. Mater. Des., 2014, 57: 325
doi: 10.1016/j.matdes.2014.01.005
[19] Mukhamed'yarova A N, Egorova S R, Nosova O V, et al. Influence of hydrothermal conditions on the phase transformations of amorphous alumina [J]. Mendeleev Commun., 2021, 31: 385
doi: 10.1016/j.mencom.2021.04.034
[20] Cao M, Liu L, Yu Z F, et al. Electrochemical corrosion behavior of 2A02 Al alloy under an accelerated simulation marine atmospheric environment [J]. J. Mater. Sci. Technol., 2019, 35: 651
doi: 10.1016/j.jmst.2018.09.060
[21] Alwahib A A, Muttlak W H, Mahdi B S, et al. Corrosion resistance enhancement by laser and reduced graphene oxide-based nano-silver for 1050 aluminum alloy [J]. Surf. Interfaces, 2020, 20: 100557
[22] Shadravan A, Sadeghian Z, Nemati A, et al. Corrosion protection of 1050 aluminium alloy using a smart self-cleaning TiO2-CNT coating [J]. Surf. Coat. Technol., 2015, 275: 224
doi: 10.1016/j.surfcoat.2015.05.015
[23] Bokati K S, Dehghanian C. Adsorption behavior of 1H-benzotriazole corrosion inhibitor on aluminum alloy 1050, mild steel and copper in artificial seawater [J]. J. Environ. Chem. Eng., 2018, 6: 1613
doi: 10.1016/j.jece.2018.02.015
[24] Zhang Y F, Yuan X G, Huang H J, et al. Corrosion behavior of Cu-Al laminated board in neutral salt fog environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 241
[24] (张艺凡, 袁晓光, 黄宏军 等. 铜铝层状复合板中性盐雾腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 241)
[1] 王靖羽, 周学杰, 王洪伦, 吴军, 陈昊, 郑鹏华. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[2] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[3] 汪洋, 刘元海, 慕仙莲, 刘淼然, 王俊, 李秋平, 陈川. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[4] 郝文魁, 陈新, 徐玲铃, 韩钰, 陈云, 黄路遥, 祝志祥, 杨丙坤, 王晓芳, 张强. 电网碳钢、镀锌钢大气腐蚀等级图绘制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[5] 李乐民, 张洁, 卞亚飞, 缪春辉, 陈国宏, 汤文明. 安徽省内电网设备常用Q235和40Cr钢大气腐蚀特性及其规律[J]. 中国腐蚀与防护学报, 2023, 43(3): 535-543.
[6] 周梦鑫, 吴军, 樊志彬, 周学杰, 陈昊. 大气腐蚀在线监测技术研究现状与展望[J]. 中国腐蚀与防护学报, 2023, 43(1): 38-46.
[7] 樊志彬, 李辛庚, 王晓明, 王倩. 区域性大气腐蚀图绘制技术研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 29-37.
[8] 范益, 杨文秀, 王军, 蔡佳兴, 马宏驰. Q690qE桥梁钢在模拟滨海工业环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[9] 马小泽, 孟令东, 曹祥康, 肖松, 董泽华. 大气污染物硫酸铵和氯化钠混合盐粒沉降对电路板铜大气腐蚀的加速机制[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[10] 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[11] 王志高, 海潮, 姜杰, 兰新生, 杜翠薇, 李晓刚. Q235钢在德阳大气环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[12] 夏晓健, 蔡建宾, 林德源, 万芯瑗, 李扬森, 张标华, 陈云翔, 韩纪层, 邹智敏, 姜春海. 沿海变电站设备腐蚀状况及其腐蚀机理与防护[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[13] 王军, 陈军君, 谢亿, 徐松, 刘兰兰, 吴堂清, 尹付成. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[14] 陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[15] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.