Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 669-674    DOI: 10.11902/1005.4537.2021.197
  研究报告 本期目录 | 过刊浏览 |
Q690qE桥梁钢在模拟滨海工业环境中的腐蚀行为研究
范益1, 杨文秀1, 王军1, 蔡佳兴1, 马宏驰1,2()
1.南京钢铁股份有限公司 江苏省高端钢铁材料重点实验室 南京 210035
2.北京科技大学新材料技术研究院 国家材料腐蚀与防护科学数据中心 北京 100083
Corrosion Behavior of Q690qE Steel in a Simulated Coastal-industrial Environment
FAN Yi1, YANG Wenxiu1, WANG Jun1, CAI Jiaxing1, MA Hongchi1,2()
1.Nanjing Iron & Steel United Co. Ltd., Nanjing 210035, China
2.National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(20300 KB)   HTML
摘要: 

采用周期浸润腐蚀实验方法,结合锈层形貌与成分分析、基体腐蚀形貌观察以及腐蚀速率分析,研究了Q690qE高强耐候桥梁钢在模拟滨海工业环境中的腐蚀行为与规律。结果表明,Q690qE钢在模拟滨海工业环境中易形成致密锈层,具有一定保护作用,但锈层中没有Ni、Cr等合金元素的富集,且锈层底部存在Cl-的富集和FeSO4的沉积,导致Q690qE钢存在较高的腐蚀速率,且基体表面出现明显的点蚀坑,通过幂指数拟合显示腐蚀深度与腐蚀时间呈现D=0.019·t0.7的幂函数关系。

关键词 Q690qE桥梁钢滨海工业环境高强耐候钢大气腐蚀    
Abstract

Corrosion behavior of high-strength Q690qE bridge steel was investigated by means of immersion-drying cyclical corrosion test (CCT) method coupled with characterization of the morphology and composition of rust, cross sectional morphology of the corroded steels and corrosion depth measurement. The results revealed that a compact rust layer can easily form in this simulated humid coastal-industrial environment, and which presents certain protection ability for the steel substrate. However, there was no enrichment of Ni/Cr and other alloy elements in the rust. Besides, there was apparent concentration of Cl- and FeSO4 underneath the rust layer, which may contribute to the high corrosion rate and evident corrosion pits on the steel surface. The results of power exponent fitting display that the corrosion depth (mm) and time (d) exhibits a well power function of D=0.019·t0.7.

Key wordsQ690qE bridge steel    coastal-industrial environment    high-strength weathering steel    atmospheric corrosion
收稿日期: 2021-08-13     
ZTFLH:  TG172.3  
基金资助:国家科技基础资源调查专项(2019FY101400);中央高校基本科研业务费(FRF-BD-20-26A)
通讯作者: 马宏驰     E-mail: mahongchi@ustb.edu.cn
Corresponding author: MA Hongchi     E-mail: mahongchi@ustb.edu.cn
作者简介: 范益,男,1980年生,高级工程师

引用本文:

范益, 杨文秀, 王军, 蔡佳兴, 马宏驰. Q690qE桥梁钢在模拟滨海工业环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
Yi FAN, Wenxiu YANG, Jun WANG, Jiaxing CAI, Hongchi MA. Corrosion Behavior of Q690qE Steel in a Simulated Coastal-industrial Environment. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 669-674.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.197      或      https://www.jcscp.org/CN/Y2022/V42/I4/669

图1  Q690qE钢微观组织
图2  Q690qE钢试样原始和周浸不同时间后的锈层形貌
图3  Q690qE钢周浸不同时间后的锈层表面形貌
图4  Q690qE钢周浸不同时间后的锈层截面形貌
图5  Q690qE钢周浸不同时间后的锈层截面成分分布
图6  Q690qE钢周浸不同时间后的宏观形貌
图7  Q690qE钢周浸不同时间后的腐蚀形貌
图8  Q690qE钢周浸腐蚀深度随周浸时间的变化趋势
1 Fan M, Shi S H, Li Z P, et al. Study on corrosion behavior of high-strength weathering bridge steel Q420qENH in different areas [J]. Met. Mater. Metall. Eng., 2020, 48(2): 13
1 范明, 史术华, 李中平 等. 高强耐候桥梁用钢Q420qENH不同地区腐蚀行为研究 [J]. 金属材料与冶金工程, 2020, 48(2): 13
2 Guo T M, Zhang Y W, Qin J S, et al. Corrosion behavior of Q345q bridge steel in three simulated atmospheres [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 319
2 郭铁明, 张延文, 秦俊山 等. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 319
3 Liu L, Zhao R Q, Yang J, et al. Study on heat treatment and corrosion behavior of new weatherproof bridge steel [J]. Hot Work. Technol., 2019, 48(22): 159
3 刘路, 赵瑞强, 杨娟 等. 新型耐候桥梁钢的热处理与腐蚀行为研究 [J]. 热加工工艺, 2019, 48(22): 159
4 Li L, Ai F F, Chen Y Q, et al. Study on corrosion behavior of Q420qENH bridge steel in simulated ocean environment [A]. 10th Chin. Iron Steel Conf. [C]. Shanghai, 2015
4 李琳, 艾芳芳, 陈义庆 等. Q420qENH桥梁钢模拟海洋环境腐蚀行为研究 [A]. 第十届中国钢铁年会暨第六届宝钢学术年会论文集III [C]. 上海, 2015
5 Lei J, Yang D H, Wang Z T. The corrosion resistance of weathering bridge steel in industrial environment [J]. Highway, 2020, 65(11): 331
5 雷进, 杨大海, 汪志甜. 耐候桥梁钢在工业大气环境下的耐蚀性研究 [J]. 公路, 2020, 65(11): 331
6 Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
doi: 10.1016/j.corsci.2021.109427
7 Jia J H, Cheng X Q, Yang X J, et al. A study for corrosion behavior of a new-type weathering steel used in harsh marine environment [J]. Constr. Build. Mater., 2020, 259: 119760
doi: 10.1016/j.conbuildmat.2020.119760
8 Xu X X, Zhang T Y, Wu W, et al. Optimizing the resistance of Ni-advanced weathering steel to marine atmospheric corrosion with the addition of Al or Mo [J]. Constr. Build. Mater., 2021, 279: 122341
doi: 10.1016/j.conbuildmat.2021.122341
9 Tranchida G, Di Franco F, Megna B, et al. Semiconducting properties of passive films and corrosion layers on weathering steel [J]. Electrochim. Acta, 2020, 354: 136697
doi: 10.1016/j.electacta.2020.136697
10 Fan Y M, Liu W, Li S M, et al. Evolution of rust layers on carbon steel and weathering steel in high humidity and heat marine atmospheric corrosion [J]. J. Mater. Sci. Technol., 2020, 39: 190
doi: 10.1016/j.jmst.2019.07.054
11 Morcillo M, Díaz I, Cano H, et al. Atmospheric corrosion of weathering steels. Overview for engineers. Part II: Testing, inspection, maintenance [J]. Constr. Build. Mater., 2019, 222: 750
doi: 10.1016/j.conbuildmat.2019.06.155
12 Díaz I, Cano H, Lopesino P, et al. Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments [J]. Corros. Sci., 2018, 141: 146
doi: 10.1016/j.corsci.2018.06.039
13 Zhang Q C, Wang J J, Wu J S, et al. Effect of ion selective property on protective ability of rust layer formed on weathering steel exposed in the marine atmosphere [J]. Acta Metall. Sin., 2001, 37: 193
13 张全成, 王建军, 吴建生 等. 锈层离子选择性对耐候钢抗海洋性大气腐蚀性能的影响 [J]. 金属学报, 2001, 37: 193
14 Zhang T Y, Xu X X, Li Y, et al. The function of Cr on the rust formed on weathering steel performed in a simulated tropical marine atmosphere environment [J]. Constr. Build. Mater., 2021, 277: 122298
doi: 10.1016/j.conbuildmat.2021.122298
15 Chen M D, Pang K, Liu Z Y, et al. Influence of rust permeability on corrosion of E690 Steel in industrial and non-industrial marine splash zones [J]. J. Mater. Eng. Perform., 2018, 27: 3742
doi: 10.1007/s11665-018-3406-7
16 Ma H C, Liu Z Y, Hao W K, et al. Stress corrosion behaviors of E690 high-strength steel in SO2-polluted marine atmosphere [J]. Acta Metall. Sin., 2016, 52: 331
16 马宏驰, 刘智勇, 郝文魁 等. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究 [J]. 金属学报, 2016, 52: 331
doi: 10.11900/0412.1961.2015.00362
17 Chen W J, Hao L, Dong J H, et al. Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmosphere [J]. Corros. Sci., 2014, 83: 155
doi: 10.1016/j.corsci.2014.02.010
18 Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
doi: 10.1016/j.corsci.2020.109076
19 Guo T M, Xu X J, Zhang Y W, et al. Corrosion behavior of Q345q bridge steel and Q345qNH weathering steel in a mixed medium of simulated industrial environment solution and deicing salt [J]. Chin. J. Mater. Res., 2020, 34: 434
19 郭铁明, 徐秀杰, 张延文 等. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为 [J]. 材料研究学报, 2020, 34: 434
20 Ma H C, Liu Z Y, Du C W, et al. Effect of SO2 content on corrosion behavior of high-strength steel E690 in polluted marine atmosphere [J]. J. Mechan. Eng., 2016, 52: 33
20 马宏驰, 刘智勇, 杜翠薇 等. SO2质量分数对污染海洋大气环境中高强钢E690腐蚀行为的影响 [J]. 机械工程学报, 2016, 52: 33
21 Ma H C, Fan Y, Liu Z Y, et al. Effect of pre-strain on the electrochemical and stress corrosion cracking behavior of E690 steel in simulated marine atmosphere [J]. Ocean Eng., 2019, 182: 188
doi: 10.1016/j.oceaneng.2019.04.044
22 Liu W M, Liu J, Pan H B, et al. Synergisic effect of Mn, Cu, P with Cr content on the corrosion behavior of weathering steel as a train under the simulated industrial atmosphere [J]. J. Alloy. Compd., 2020, 834: 155095
doi: 10.1016/j.jallcom.2020.155095
23 Feng Y L, Bai Z H, Chen L H, et al. Correlation of indoor accelerated corrosion with outdoor exposure for Corten-A weathering steel in polluted marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 519
23 冯亚丽, 白子恒, 陈利红 等. Corten-A耐候钢在模拟污染海洋大气环境中的加速腐蚀相关性研究 [J]. 中国腐蚀与防护学报, 2019, 39: 519
[1] 马小泽, 孟令东, 曹祥康, 肖松, 董泽华. 大气污染物硫酸铵和氯化钠混合盐粒沉降对电路板铜大气腐蚀的加速机制[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[2] 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[3] 王志高, 海潮, 姜杰, 兰新生, 杜翠薇, 李晓刚. Q235钢在德阳大气环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[4] 石践, 胡学文, 张道刘, 曹卉丹, 何博, 浦红, 郭锐, 汪飞. 显微组织对高强耐候钢腐蚀性能的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 721-726.
[5] 夏晓健, 蔡建宾, 林德源, 万芯瑗, 李扬森, 张标华, 陈云翔, 韩纪层, 邹智敏, 姜春海. 沿海变电站设备腐蚀状况及其腐蚀机理与防护[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[6] 王军, 陈军君, 谢亿, 徐松, 刘兰兰, 吴堂清, 尹付成. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[7] 陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[8] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[9] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[10] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[11] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[12] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[13] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[14] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[15] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.