Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 647-654    DOI: 10.11902/1005.4537.2021.157
  研究报告 本期目录 | 过刊浏览 |
2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究
刘宇桐1, 陈震宇1, 朱忠亮1, 冯瑞2, 包汉生3, 张乃强1()
1.华北电力大学 电站能量传递转化与系统教育部重点实验室 北京 102206
2.中国华能集团公司核电事业部 北京 100031
3.钢铁研究总院特殊钢研究所 北京 100081
SCC Susceptibility of 2.25Cr1Mo Steel and Its Weld Joints in High Temperature Steam
LIU Yutong1, CHEN Zhenyu1, ZHU Zhongliang1, FENG Rui2, BAO Hansheng3, ZHANG Naiqiang1()
1.Key Laboratory of Power Station Energy Transfer Conversion and System, North China Electric Power University, Beijing 102206, China
2.Nuclear Power Division, China Huaneng Group Co. Ltd., Beijing 100031, China
3.Institute for Special Steels, Central Iron & Steel Research Institute, Beijing 100081, China
全文: PDF(11488 KB)   HTML
摘要: 

对新型2.25Cr1Mo钢及其焊接接头的应力腐蚀开裂 (SCC) 敏感性进行研究,以评估其在换热管道中的适用性。以1×10-6/s的应变速率分别在500 ℃/0.1 MPa的空气和水蒸气中进行了慢应变速率拉伸 (SSRT) 实验。通过扫描电镜分析断口、标距表面和横截面的形貌,通过能谱分析确定横截面氧化层的元素分布。结果表明,在500 ℃高温水蒸气中,焊接接头的抗拉强度和延展率低于母材,水蒸气环境下试样的延展率高于空气环境。所有试样均呈现单纯韧性断裂特征和较低的SCC敏感性,开裂仅发生在断口附近的氧化层内而未向基体延伸。此外,经SSRT后焊缝附近未发生开裂,焊接对SCC敏感性的影响不大。

关键词 2.25Cr1Mo钢应力腐蚀开裂高温水蒸气焊接接头    
Abstract

The stress corrosion cracking (SCC) susceptibility of a new type of 2.25Cr1Mo steel and its weld joints was studied by means of slow strain rate tensile (SSRT) tests at a constant strain rate of 1×10-6/s in air and steam at 0.1 MPa/500 ℃ respectively, in order to evaluate its suitability for heat exchanging pipes. The morphology of fracture surface, gage surface and cross-section were analyzed by scanning electron microscopy (SEM). The element composition of oxide scales was determined by energy spectrum analysis (EDS). Experimental results showed that the tensile strength and elongation at break of weld joints were lower than that of base metal in steam at 500 ℃, whilst the elongation at break of which in high temperature steam was higher than that in air. All specimens exhibited features of simple ductile fracture and low SCC susceptibility, cracking occurred only in the oxide scale which was near the fracture, without extending to the matrix. In addition, cracking did not occur near the fusion boundary after SSRT. In conclusion, welding had little effect on SCC susceptibility.

Key words2.25Cr1Mo steel    stress corrosion cracking    high temperature water    weld joint
收稿日期: 2021-07-06     
ZTFLH:  TM623  
基金资助:国家自然科学基金(52071140);中央高校基本科研业务费(2020MS007)
通讯作者: 张乃强     E-mail: zhnq@ncepu.edu.cn
Corresponding author: ZHANG Naiqiang     E-mail: zhnq@ncepu.edu.cn
作者简介: 刘宇桐,男,1997年生,硕士生

引用本文:

刘宇桐, 陈震宇, 朱忠亮, 冯瑞, 包汉生, 张乃强. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
Yutong LIU, Zhenyu CHEN, Zhongliang ZHU, Rui FENG, Hansheng BAO, Naiqiang ZHANG. SCC Susceptibility of 2.25Cr1Mo Steel and Its Weld Joints in High Temperature Steam. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 647-654.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.157      或      https://www.jcscp.org/CN/Y2022/V42/I4/647

MaterialCrCSiMnPSNiVNbMoFe
Test steel2.370.130.0770.470.0020.00040.0300.009<0.011.00Bal.
Weld metal2.20~2.500.07~0.120.15~0.50≤0.90≤0.01≤0.005---≤0.04≤0.030.90~1.20Bal.
表1  实验钢和焊接金属的化学成分
图1  焊接接头及试样的示意图
图2  实验钢及其焊接接头的应力-应变曲线
SpecimenEnvironmentTensile strength / MPaElonga-tion / %Fracture time / hReduction in area / %
Test steel-1Air421.2027.7477.1993.41
Test steel-2Steam417.4033.4195.6592.16
Z124-1Air305.1923.6468.0991.49
Z124-2Steam286.6632.2489.5691.15
Z125-1Air295.0125.3672.9290.19
Z125-2Steam291.5229.0180.6988.95
表2  SSRT实验参数及力学性能
图3  水蒸气中的断口形貌SEM图
图4  SSRT试验用焊接接头试样Z124-2的照片
图5  试样标距表面SEM形貌
图6  Z124-2经SSRT后的横截面形貌及EDS结果 (靠近断口)
图7  Z124-2经SSRT后的横截面形貌及EDS结果 (靠近焊缝)
图8  实验钢及其焊接接头的抗拉强度、SCC敏感度和颈缩率
1 Pan X X. Development of steam generator main materials for fast reactor [J]. World Nonf. Met., 2017, (9): 181
1 潘相相. 钠冷快堆蒸汽发生器主材研究进展 [J]. 世界有色金属, 2017, (9): 181
2 Zhang Z, Hu Z F, Zhang L F, et al. Effect of temperature and dissolved oxygen on stress corrosion cracking behavior of P92 ferritic-martensitic steel in supercritical water environment [J]. J. Nucl. Mater., 2018, 498: 89
doi: 10.1016/j.jnucmat.2017.10.024
3 Liu T G, Xia S, Shoji T. Intergranular stress corrosion cracking in simulated BWR water of 316L stainless steels manufactured with different procedures [J]. Corros. Sci., 2021, 183: 109344
doi: 10.1016/j.corsci.2021.109344
4 Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
4 焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417
5 Laha K, Rao K B S, Mannan S L. Creep behaviour of post-weld heat-treated 2.25Cr-1Mo ferritic steel base, weld metal and weldments [J]. Mat. Sci. Eng., 1990, 129A: 183
6 Raman R K S, Gnanamoorthy J B. The oxidation behaviour of the weld metal, heat affected zone and base metal in the weldments of 2.25Cr-1Mo steel [J]. Corros. Sci., 1993, 34: 1275
doi: 10.1016/0010-938X(93)90087-W
7 Cang Y, Huang Y H, Weng S, et al. Effect of environmental variables on galvanic corrosion performance of welded joint of nuclear steam turbine rotor [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 318
7 苍雨, 黄毓晖, 翁硕 等. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 318
8 Ma C, Peng Q J, Han E-H, et al. Review of stress corrosion cracking of structural materials in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 37
8 马成, 彭群家, 韩恩厚 等. 核电结构材料应力腐蚀开裂的研究现状与进展 [J]. 中国腐蚀与防护学报, 2014, 34: 37
9 Chung W C, Huang J Y, Tsay L W, et al. Stress corrosion cracking in the heat-affected zone of A508 steel welds under high-temperature water [J]. J. Nucl. Mater., 2011, 408: 125
doi: 10.1016/j.jnucmat.2010.10.052
10 Hou J, Peng Q J, Takeda Y, et al. Microstructure and stress corrosion cracking of the fusion boundary region in an alloy 182-A533B low alloy steel dissimilar weld joint [J]. Corros. Sci., 2010, 52: 3949
doi: 10.1016/j.corsci.2010.08.002
11 Peng Q J, Xue H, Hou J, et al. Role of water chemistry and microstructure in stress corrosion cracking in the fusion boundary region of an Alloy 182-A533B low alloy steel dissimilar weld joint in high temperature water [J]. Corros. Sci., 2011, 53: 4309
doi: 10.1016/j.corsci.2011.08.046
12 Dong L J, Ma C, Peng Q J, et al. Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment [J]. J. Mater. Sci. Technol., 2020, 40: 1
doi: 10.1016/j.jmst.2019.08.035
13 Dong L J, Peng Q J, Xue H, et al. Correlation of microstructure and stress corrosion cracking initiation behaviour of the fusion boundary region in a SA508 Cl. 3-Alloy 52M dissimilar weld joint in primary pressurized water reactor environment [J]. Corros. Sci., 2018, 132: 9
doi: 10.1016/j.corsci.2017.12.011
14 Zhu R L, Wang J Q, Zhang Z M, et al. Stress corrosion cracking of fusion boundary for 316L/52M dissimilar metal weld joints in borated and lithiated high temperature water [J]. Corros. Sci., 2017, 120: 219
doi: 10.1016/j.corsci.2017.01.024
15 Ming H L, Zhu R L, Zhang Z M, et al. Microstructure, local mechanical properties and stress corrosion cracking susceptibility of an SA508-52M-316LN safe-end dissimilar metal weld joint by GTAW [J]. Mater. Sci. Eng., 2016, 669A: 279
16 Dong L J, Zhang X L, Han Y L, et al. Effect of surface treatments on microstructure and stress corrosion cracking behavior of 308L weld metal in a primary pressurized water reactor environment [J]. Corros. Sci., 2020, 166: 108465
doi: 10.1016/j.corsci.2020.108465
17 Dong L J, Peng Q J, Han E-H, et al. Microstructure and intergranular stress corrosion cracking susceptibility of a SA508-52M-316L dissimilar metal weld joint in primary water [J]. J. Mater. Sci. Technol., 2018, 34: 1281
doi: 10.1016/j.jmst.2017.11.051
18 Khan H I, Zhang N Q, Zhu Z L, et al. Behavior and susceptibility to stress corrosion cracking of a nickel-based alloy in superheated steam and supercritical water [J]. Mater. Corros., 2019, 70: 48
19 Yang L. Influence of welding line energy on mechanical performance of WEL-TEN80A steel's welding joint [J]. Hot Working Technol., 2005, (3): 46
19 杨莉. 焊接线能量对WEL-TEN80A钢焊接接头力学性能的影响 [J]. 热加工工艺, 2005, (3): 46
20 Yang Y L, Zhu Z P. Effect of SMAW heat input on properties of Q345R steel welded joint [J]. Energy Res. Manage., 2016, (3): 94
20 杨彦龙, 朱志平. 手工电弧焊线能量对Q345R焊接接头性能的影响 [J]. 能源研究与管理, 2016, (3): 94
21 Akbari-Garakani M, Mehdizadeh M. Effect of long-term service exposure on microstructure and mechanical properties of Alloy 617 [J]. Mater. Des., 2011, 32: 2695
doi: 10.1016/j.matdes.2011.01.017
22 Ampornrat P, Gupta G, Was G S. Tensile and stress corrosion cracking behavior of ferritic-martensitic steels in supercritical water [J]. J. Nucl. Mater., 2009, 395: 30
doi: 10.1016/j.jnucmat.2009.09.012
23 Sun H Y, Yang H J, Wang M, et al. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water [J]. J. Nucl. Mater., 2017, 484: 339
doi: 10.1016/j.jnucmat.2016.10.039
24 Miwa Y, Jitsukawa S, Tsukada T. Stress corrosion cracking susceptibility of a reduced-activation martensitic steel F82H [J]. J. Nucl. Mater., 2009, 386-388: 703
doi: 10.1016/j.jnucmat.2008.12.332
25 Maeng W Y, Lee J H, Kim U C. Environmental effects on the stress corrosion cracking susceptibility of 3.5NiCrMoV steels in high temperature water [J]. Corros. Sci., 2005, 47: 1876
doi: 10.1016/j.corsci.2004.09.022
26 Wang J M, Su H Z, Ajmand F, et al. Effects of corrosion potential, dissolved oxygen, and chloride on the stress corrosion cracking susceptibility of a 316NG stainless steel weld joint [J]. Corrosion, 2019, 75: 946
doi: 10.5006/2952
27 Dubey D, Kadali K, Panda S S, et al. Comparative study on the stress corrosion cracking susceptibility of AZ80 and AZ31 magnesium alloys [J]. Mater. Sci. Eng., 2020, 792A: 139793
28 Murkute P, Ramkumar J, Mondal K. Stress corrosion cracking behavior of interstitial free steel via slow strain rate technique [J]. J. Mater. Eng. Perform., 2016, 25: 2878
doi: 10.1007/s11665-016-2148-7
29 Padekar B S, Raman R K S, Raja V S, et al. Stress corrosion cracking of a recent rare-earth containing magnesium alloy, EV31A, and a common Al-containing alloy, AZ91E [J]. Corros. Sci., 2013, 71: 1
doi: 10.1016/j.corsci.2013.01.001
30 Winzer N, Atrens A, Song G, et al. A Critical review of the stress corrosion cracking (SCC) of magnesium alloys [J]. Adv. Eng. Mater., 2005, 7: 659
doi: 10.1002/adem.200500071
31 Guo X L, Chen K, Gao W H, et al. A research on the corrosion and stress corrosion cracking susceptibility of 316L stainless steel exposed to supercritical water [J]. Corros. Sci., 2017, 127: 157
doi: 10.1016/j.corsci.2017.08.027
32 Kuang W J, Was G S, Miller C, et al. The effect of cold rolling on grain boundary structure and stress corrosion cracking susceptibility of twins in alloy 690 in simulated PWR primary water environment [J]. Corros. Sci., 2018, 130: 126
doi: 10.1016/j.corsci.2017.11.002
33 Ullrich C, Tillmann W, Rademacher H G, et al. Investigation of the stress corrosion cracking behavior on T24 material under the operational conditions in the water wall [J]. Int. J. Pres. Ves. Pip., 2021, 190: 104317
34 Li H Y, Cao Q, Zhu Z L. High temperature oxidation behavior of ferritic steel in supercritical water at 550-700°C [J]. Mater. High Temp., 2019, 36: 111
doi: 10.1080/09603409.2018.1468524
35 Raman R K S, Muddle B C. High temperature oxidation in the context of life assessment and microstructural degradation of weldments of 2.25Cr-1Mo steel [J]. Int. J. Pres. Ves. Pip., 2002, 79: 585
[1] 刘保平, 张志明, 王俭秋, 韩恩厚, 柯伟. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[2] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[3] 王永祥, 何柏林, 李力. 超声冲击改善P355NL1钢焊接接头腐蚀疲劳性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 120-126.
[4] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[5] 余德远, 刘智勇, 杜翠薇, 黄辉, 林楠. 管线钢土壤应力腐蚀开裂研究进展及展望[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[6] 石践, 胡学文, 何博, 杨峥, 郭锐, 汪飞. Q345NS钢焊接接头耐硫酸腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[7] 孙晓光, 王子晗, 徐学旭, 韩晓辉, 李刚卿, 刘智勇. 工业大气环境对Al-Mg-Si合金腐蚀疲劳特性的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 501-507.
[8] 焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(4): 417-428.
[9] 乔忠立, 王玲, 史艳华, 杨众魁. 14Cr1MoR钢焊接接头组织及耐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[10] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[11] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[12] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[15] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.