中国腐蚀与防护学报, 2022, 42(4): 647-654 DOI: 10.11902/1005.4537.2021.157

研究报告

2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究

刘宇桐1, 陈震宇1, 朱忠亮1, 冯瑞2, 包汉生3, 张乃强,1

1.华北电力大学 电站能量传递转化与系统教育部重点实验室 北京 102206

2.中国华能集团公司核电事业部 北京 100031

3.钢铁研究总院特殊钢研究所 北京 100081

SCC Susceptibility of 2.25Cr1Mo Steel and Its Weld Joints in High Temperature Steam

LIU Yutong1, CHEN Zhenyu1, ZHU Zhongliang1, FENG Rui2, BAO Hansheng3, ZHANG Naiqiang,1

1.Key Laboratory of Power Station Energy Transfer Conversion and System, North China Electric Power University, Beijing 102206, China

2.Nuclear Power Division, China Huaneng Group Co. Ltd., Beijing 100031, China

3.Institute for Special Steels, Central Iron & Steel Research Institute, Beijing 100081, China

通讯作者: 张乃强,E-mail:zhnq@ncepu.edu.cn,研究方向为超超临界发电技术、电站材料高温腐蚀与应力腐蚀

收稿日期: 2021-07-06   修回日期: 2021-07-27  

基金资助: 国家自然科学基金.  52071140
中央高校基本科研业务费.  2020MS007

Corresponding authors: ZHANG Naiqiang, E-mail:zhnq@ncepu.edu.cn

Received: 2021-07-06   Revised: 2021-07-27  

Fund supported: National Natural Science Foundation of China.  52071140
Fundamental Research Funds for the Central Universities.  2020MS007

作者简介 About authors

刘宇桐,男,1997年生,硕士生

摘要

对新型2.25Cr1Mo钢及其焊接接头的应力腐蚀开裂 (SCC) 敏感性进行研究,以评估其在换热管道中的适用性。以1×10-6/s的应变速率分别在500 ℃/0.1 MPa的空气和水蒸气中进行了慢应变速率拉伸 (SSRT) 实验。通过扫描电镜分析断口、标距表面和横截面的形貌,通过能谱分析确定横截面氧化层的元素分布。结果表明,在500 ℃高温水蒸气中,焊接接头的抗拉强度和延展率低于母材,水蒸气环境下试样的延展率高于空气环境。所有试样均呈现单纯韧性断裂特征和较低的SCC敏感性,开裂仅发生在断口附近的氧化层内而未向基体延伸。此外,经SSRT后焊缝附近未发生开裂,焊接对SCC敏感性的影响不大。

关键词: 2.25Cr1Mo钢 ; 应力腐蚀开裂 ; 高温水蒸气 ; 焊接接头

Abstract

The stress corrosion cracking (SCC) susceptibility of a new type of 2.25Cr1Mo steel and its weld joints was studied by means of slow strain rate tensile (SSRT) tests at a constant strain rate of 1×10-6/s in air and steam at 0.1 MPa/500 ℃ respectively, in order to evaluate its suitability for heat exchanging pipes. The morphology of fracture surface, gage surface and cross-section were analyzed by scanning electron microscopy (SEM). The element composition of oxide scales was determined by energy spectrum analysis (EDS). Experimental results showed that the tensile strength and elongation at break of weld joints were lower than that of base metal in steam at 500 ℃, whilst the elongation at break of which in high temperature steam was higher than that in air. All specimens exhibited features of simple ductile fracture and low SCC susceptibility, cracking occurred only in the oxide scale which was near the fracture, without extending to the matrix. In addition, cracking did not occur near the fusion boundary after SSRT. In conclusion, welding had little effect on SCC susceptibility.

Keywords: 2.25Cr1Mo steel ; stress corrosion cracking ; high temperature water ; weld joint

PDF (11488KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘宇桐, 陈震宇, 朱忠亮, 冯瑞, 包汉生, 张乃强. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究. 中国腐蚀与防护学报[J], 2022, 42(4): 647-654 DOI:10.11902/1005.4537.2021.157

LIU Yutong, CHEN Zhenyu, ZHU Zhongliang, FENG Rui, BAO Hansheng, ZHANG Naiqiang. SCC Susceptibility of 2.25Cr1Mo Steel and Its Weld Joints in High Temperature Steam. Journal of Chinese Society for Corrosion and Protection[J], 2022, 42(4): 647-654 DOI:10.11902/1005.4537.2021.157

2.25Cr1Mo低合金钢广泛应用于蒸发器、过热器的换热管中[1],其力学性能和耐腐蚀性需要满足较高的需求。在实际服役过程中,水蒸气环境和力学条件的交互作用使合金发生应力腐蚀开裂 (SCC)[2-4],管道的开裂敏感性上升。焊接接头热影响区的耐腐蚀性能发生劣化[5-7],主回路焊接部位的应力腐蚀开裂是影响管道服役寿命的主要损伤模式之一[8]

合金焊接接头的SCC行为受到了学者们的广泛关注。Chung等[9]研究了焊缝热输入对A508钢焊接接头SCC敏感性的影响,随焊接输入热量上升,焊缝附近热影响区的晶粒粗化,SCC敏感性上升。Hou等[10]研究了A182-A533B焊接接头在高温水蒸气中的SCC裂纹扩展行为,裂纹倾向于在A182的Ⅰ型、Ⅱ型边界中延伸,并在焊缝处发生钝化。而Peng等[11]研究表明焊缝处的钝化裂纹可以被选择性晶界氧化重新激活,从而继续扩展。溶氧量和硫酸盐浓度增加均会加快裂纹扩展速率 (CGR)。焊缝区域的微观结构具有特殊性,会对金属焊接接头的SCC性能产生影响。焊缝附近富Cr的δ铁素体相可以降低材料在高温水蒸气中的氧化速率,焊缝附近析出的碳化物可以阻碍晶界滑移,抑制晶界氧化,从而降低SCC敏感度[12]。而Dong等[13]研究表明SA508-A52M异种金属焊接接头具有SCC敏感性,焊缝两侧强度不匹配和晶界铬贫化会导致裂纹在焊缝处萌生,并沿贫铬晶界发展。同时,焊缝处金属收缩引起残余应变,也会导致合金热影响区的SCC敏感性上升[14]。目前的研究主要关注焊接试样的晶界角度、微观硬度和残余应变[15],并以延展率[15]、截面裂纹深度[16]和开裂形貌[17]等评价试样的SCC敏感度。然而,对焊缝附近氧化层形貌和元素分布变化的分析较少,氧化层可能会随焊接区微观结构而变化,并对SCC行为造成影响。

2.25Cr1Mo钢作为蒸汽发生器的主要材料,对母材及其焊接接头在实际工况环境中的SCC行为研究仍不充分。为考察焊接对试样SCC性能的影响,并探究焊接接头的SCC方式,本文在500 ℃/0.1 MPa高温空气和水蒸气环境中对新型2.25Cr1Mo钢及其焊接接头试样开展SSRT实验,比较不同试样的应力-应变行为、力学性能和断口形貌,讨论了试样的SCC敏感度,并对焊接试样经SSRT后不同位置的氧化层开裂形貌进行分析。

1 实验方法

新型2.25Cr1Mo钢和焊接金属的化学成分如表1所示,实验钢在室温下的力学性能为:屈服强度447 MPa,抗拉强度560 MPa,延展率31.5%,颈缩率80%。焊接试样分别以25 kJ/cm和35 kJ/cm的线能量进行手工电弧焊,记为Z124、Z125。钢材经945 ℃保温1 h风冷和725 ℃保温2.5 h空冷后,根据ASTM-E399标准,将钢材加工成棒状试样,对焊接试样取样时确保焊接金属完整处于标距段以内,如图1所示。试样分别在水和无水乙醇中进行超声波清洗,时间控制在10 min以上。

表1   实验钢和焊接金属的化学成分

Table 1  Chemical compositions of the test steel and weld metal (mass fraction / %)

MaterialCrCSiMnPSNiVNbMoFe
Test steel2.370.130.0770.470.0020.00040.0300.009<0.011.00Bal.
Weld metal2.20~2.500.07~0.120.15~0.50≤0.90≤0.01≤0.005---≤0.04≤0.030.90~1.20Bal.

新窗口打开| 下载CSV


图1

图1   焊接接头及试样的示意图

Fig.1   Schematic drawings of sampling location (a) and the geometry and dimensions (mm) of the specimen (b)


SCC测试系统见参考文献[18]。本实验环境为500 ℃/0.1 MPa的水蒸气,应变速率为1×10-6/s,并在空气环境下对试样进行SSRT对照实验。所有试样在指定环境下经恒应变拉伸至断裂后,快速将反应釜冷却至室温,避免高温环境对断口形貌造成破坏。对清洗后的断口及标距表面进行微观分析。将试样沿轴线方向截开,对截面进行打磨和抛光后,置于硝酸酒精腐蚀液中,以暴露焊缝。采用ZEISS Gemini300扫描电镜 (SEM) 和Oxford MAX-50能谱分析仪 (EDS) 对截面氧化层进行、分析,以观察断口附近和焊缝两侧的开裂情况、氧化层形貌和元素分布。

2 实验结果

2.1 应力-应变行为

实验钢及Z124、Z125钢在500 ℃/0.1 MPa空气和水蒸气中的应力-应变曲线如图2所示。所有试样均未表现出加工硬化和明显的动态应变时效现象。

图2

图2   实验钢及其焊接接头的应力-应变曲线

Fig.2   Stress-strain curves of the test steel and its weld joints


表2为试样经SSRT后的抗拉强度、延展率、断裂时间和颈缩率。与实验钢相比,空气中焊接试样Z124、Z125钢的抗拉强度分别下降了27.54%和29.96%,高温水蒸气中Z124、Z125钢的抗拉强度分别下降了31.32%和30.16%。延展率主要受环境因素控制,当实验介质从空气转变为水蒸气时,试样的延展率和断裂时间上升,而颈缩率略微下降。焊接试样的颈缩率略低于母材。

表2   SSRT实验参数及力学性能

Table 2  Summary of SSRT test parameters and mechanical properties at 500 ℃/0.1 MPa

SpecimenEnvironmentTensile strength / MPaElonga-tion / %Fracture time / hReduction in area / %
Test steel-1Air421.2027.7477.1993.41
Test steel-2Steam417.4033.4195.6592.16
Z124-1Air305.1923.6468.0991.49
Z124-2Steam286.6632.2489.5691.15
Z125-1Air295.0125.3672.9290.19
Z125-2Steam291.5229.0180.6988.95

新窗口打开| 下载CSV


2.2 断裂行为

2.2.1 断口形貌

图3为试样在水蒸气环境中的断口形貌。实验钢-2与Z124-2、Z125-2钢的断口形貌近似,均为单纯韧窝形貌,并伴有氧化层覆盖。断口中心韧窝深、数量多,断口边缘韧窝数量下降,尺寸变小。未观测到冰糖状开裂形貌和沿晶裂纹,试样的断裂方式均为韧性断裂。

图3

图3   水蒸气中的断口形貌SEM图

Fig.3   SEM images of the fracture surfaces of the test steel and its weld joints in steam environment: (a) test steel-2, (b) Z124-2, (c) Z125-2, (d) center and (e) edge regions for Z124-2


2.2.2 标距表面形貌

以Z124-2钢为例,手工电弧焊试样经恒应变后断裂,试样表面覆盖黑褐色氧化物,如图4a所示。图4b为Z124-2钢的开裂区域局部放大图,开裂位置未发生在焊接金属区,而是位于基体金属侧。从焊缝处开始,试样发生颈缩,且颈缩程度逐渐增大。

图4

图4   SSRT试验用焊接接头试样Z124-2的照片

Fig.4   Photograph of the weld joint specimen Z124-2 before and after SSRT test (a) and high magnifi-cation view of the cracked region (b)


图5表明在空气、水蒸气环境下,棒状试样均发生明显的颈缩,断口形貌为杯锥状,塑性变形较为明显。靠近断口处标距表面存在大量裂纹,裂纹主要沿垂直于载荷的方向发展。不同环境中裂纹形貌存在差异。在空气中裂纹大多较为平直,而水蒸气中既有平直裂纹也有曲折裂纹。在水蒸气环境中3种试样的裂纹尺寸和深度存在明显差异。焊接试样的裂纹较细,随焊接线能量增大,裂纹逐渐变浅,呈现愈合趋势。Z125-2刚断口附近呈现起伏的氧化层形貌,裂纹基本消失 (图5f)。

图5

图5   试样标距表面SEM形貌

Fig.5   SEM surface images of various samples in the gage sections: (a) test steel-1, (b) test steel-2, (c) Z124-1, (d) Z124-2, (e) Z125-1, (f) Z125-2


2.2.3 截面形貌和元素分布

对Z124-2钢横截面靠近断口处进行SEM、EDS分析如图6所示。氧化层为双侧膜结构,总厚度约为16 μm,外层与内层的厚度相近。0~8 μm处为氧化外层,层内Fe、O富集但Cr、Mo贫化。8~16 μm处为氧化内层,富Fe、O、Cr、Mo。在11~13 μm处,层内Cr、Mo占比下降,而13~16 μm内Cr、Mo含量突增,Fe、O含量相应下降。结合面扫描结果,内氧化层中Cr、Mo存在间断分布现象,这可能与应变作用有关。氧化层内裂纹沿垂直载荷方向发展,裂纹穿过外氧化层,并在内氧化层中钝化,并未向基体内部延伸。微裂纹和孔洞大多存在于外氧化层,内氧化层的缺陷较少。

图6

图6   Z124-2经SSRT后的横截面形貌及EDS结果 (靠近断口)

Fig.6   Cross-sectional morphology of Z124-2 after SSRT (near the fracture) (a), EDS line scannings along marked black line (b) and elemental mappings of Fe (c1), Cr (c2), O (c3), Mo (c4)


对Z124钢横截面靠近焊缝处进行观察如图7所示。焊缝两侧氧化层的形貌近似,外层存在微裂纹,但未观察到垂直载荷方向的长裂纹。焊缝两侧氧化层的厚度存在差异,焊接金属侧氧化层总厚度为10 μm左右,比基体侧氧化层薄。焊接金属侧b区域EDS线扫结果显示,双层氧化膜结构仍存在。富Cr、Mo的氧化内层厚度小于外层,约为3 μm。与断口相比,焊缝附近氧化内层Cr、Mo未出现突降现象,内层仍保持致密结构。

图7

图7   Z124-2经SSRT后的横截面形貌及EDS结果 (靠近焊缝)

Fig.7   Cross-sectional morphology of Z124-2 after SSRT (near the fusion boundary) (a) and EDS elemental line scannings along marked black line (b, c)


3 分析与讨论

3.1 新型2.25Cr1Mo钢及其焊接接头的力学性能

根据表2结果,经SSRT后新型2.25Cr1Mo钢的强度和塑性优于其焊接接头。一方面,焊接产生的热量会增大热影响区晶粒尺寸,从而导致试样的屈服强度、抗拉强度和冲击功下降[19]。随焊接线能量增大,晶粒粗化程度加剧。材料塑性随晶粒粗化而下降,表现为局部变形不均匀,应力集中更加严重,延展率下降[20]。另一方面,未受焊接的母材晶粒尺寸相对小,对位错的阻碍作用明显,位错聚集导致抗拉强度增大。同时,晶粒度小的试样晶界面积大,曲折晶界可以抑制试样裂纹扩展,增大延展率。

高温水蒸气环境中试样的延展率比空气环境大。Akbari等[21]指出,合金表面钝化膜的结构会对试样的力学性能产生影响。在水蒸气中试样的氧化速率加快,裂纹愈合速率加快,裂纹扩展速度受到抑制,开裂程度有所缓解,因此延展率增大。

3.2 新型2.25Cr1Mo钢及其焊接接头的SCC敏感性

开裂模式可以评价SCC敏感度[22],当开裂由穿晶韧性断裂向沿晶脆性断裂过渡时,SCC敏感性随之增大。3种试样在水蒸气中,开裂模式均未发生由韧向脆的转变,这说明其晶界仍保持较高强度,材料抵抗沿晶应力腐蚀开裂 (IGSCC) 的性能较好。Sun等[23]认为试样断口呈现外脆内韧特征,并以断口IGSCC区域占比评价SCC敏感度。实验钢、Z124、Z125钢的中心和边缘区域均为韧性断裂,当实验环境从空气向水蒸气转变时,开裂形貌未发生明显变化。Yukio等[24]在高温水蒸气中对铁马氏体钢F82H进行SSRT实验,断口为单纯韧窝形貌,未观测到IGSCC发生。基于断口形貌可以认为,新型2.25Cr1Mo钢及焊接接头的SCC敏感性较低。

力学性能转变可以评价SCC敏感性[25],经受应力腐蚀的材料强度和塑性下降,表现为抗拉强度和颈缩率降低。Wang等[26]以ASTM G129评价SCC的敏感性,当实验环境由氩气转变为高温水蒸气时,将塑性变化作为评价SCC敏感性的指标。Dubey等[27]采用抗拉强度、延展率和断裂时间来量化SCC敏感性。在本次实验中,根据 公式 (1) 计算试样的SCC敏感性指数[28]。Padekar等[30]认为试样的SCC敏感性指数低于15%[29],且越趋近于0,则表明其SCC敏感性越低。

Iσ=1-σsσa×100%

其中, Iσ为SCC敏感性指数;σsσa分别为试样在水蒸气和空气中的抗拉强度,单位为MPa。

图8a所示,实验钢、Z124、Z125钢在500 ℃/0.1 MPa水蒸气中的SCC敏感性指数分别为0.9%、6.07%和1.18%,SCC敏感性较低。试样在水蒸气中的颈缩率略低于空气中,颈缩率受高温水蒸气影响的幅度均较小,低于2%。基于抗拉强度和颈缩率的变化,新型2.25Cr1Mo钢及焊接接头的SCC敏感性较低 (图8b)。

图8

图8   实验钢及其焊接接头的抗拉强度、SCC敏感度和颈缩率

Fig.8   Tensile strength,SCC susceptibility (a) and reduction (b) of test steel and its weld joints


有研究以标距表面裂纹密度评价SCC敏感性[18]。棒状试样经受拉伸应变后产生塑性变形,变形会导致微裂纹在晶粒内部及晶界处萌生,并作为水蒸气向内扩散和氧化的通道[31]。Kuang等[32]研究表明试样发生了明显的IGSCC,断裂形貌表明基体晶界被侵蚀,沿晶微裂纹在应力作用下扩展,彼此相连形成长裂纹。因此可以通过统计标距表面裂纹密度来反映试样的SCC敏感性。然而在本实验中,经SSRT后裂纹全部集中在氧化层内,未扩展至基体内部,此时晶界受富铬的内氧化层保护,未受到严重侵蚀,如图6所示。晶界仍保持良好强度,断口得以呈现完全韧性断裂形貌。对于以韧性断裂为主的试样,统计标距表面裂纹密度难以反映试样的SCC敏感性。同时,Z124、Z125钢的氧化现象严重,裂纹容易变浅或被氧化层覆盖,误差较大。

基于开裂模式、强度和塑性的分析,新型2.25Cr1Mo钢及其焊接接头在高温水蒸气中的SCC敏感性较低。

3.3 新型2.25Cr1Mo钢焊接接头在高温水蒸气中的开裂方式

Ullrich等[33]认为2.25Cr1Mo钢在120~215 ℃水蒸气中发生晶界氧化,断口呈现IGSCC形貌,SCC敏感度较高。而本试验中,高温加速合金氧化,导致裂尖前方形成致密的富铬钝化膜,能够抑制晶界氧化,降低SCC敏感性。在恒应变下,裂纹在外氧化层中萌生并向内氧化层扩展,由于高温水蒸气的氧化性,“裂纹发展-新氧化层形成”这一过程循环进行。如图6a所示,裂纹并未穿透内氧化层,这是因为一方面富铬内层的强度较高,裂纹发展速度下降;另一方面,随裂纹靠近基体,裂尖处Cr离子的扩散速度加快,新氧化层形成速度加快,表现为裂纹总体发展速率降低。在SSRT过程中,基体受富铬内层的保护,受腐蚀的影响较小 (图6b),基体外存在2 mm左右的Cr突增层,在这一层内,没有观测到裂纹,因此试样的SCC敏感性较低。

Zhu等[34]研究了T22钢在550 ℃水蒸气中的氧化层形貌,内外层厚度接近且呈明显分层现象,内层由 (Fe,Cr)3O4组成,外层由Fe3O4组成,氧化进程由铁离子向外扩散控制。在本实验中,经SSRT后内外氧化层的厚度相近,这说明含铬内层对铁离子向外扩散仍具有限制作用。结合图6线扫也证实,随内氧化层Cr含量突增,Fe、O含量明显下降,内外氧化层厚度比受加载的影响效果不明显。此外,铬含量上升使氧化层更加致密,对裂纹扩展有抑制作用。当裂纹穿透外氧化层延伸至内氧化层时,裂纹扩展速率逐渐下降,当扩展速率小于氧化速率时,裂纹不再扩展。

焊接试样Z124的开裂位置位于基体侧,对比图6和7的截面形貌后发现,断口附近氧化层内存在明显裂纹,而焊缝处仅存在少量微裂纹。Dong等[12]对异种金属焊接试样进行SSRT试验,焊缝两侧金属的元素组成差异大,强度不匹配和元素贫化会导致裂纹在焊缝附近萌生。而本实验中,焊接金属与基体的元素成分接近。虽然焊接产热会导致富铬析出物增多,热影响区氧化层的耐腐蚀性降低[35],但层内不存在明显长裂纹,对SCC的影响较小。

4 结论

(1) 采用1×10-6/s的应变速率进行SSRT,高温水蒸气环境中试样的抗拉强度略微下降,延展率明显上升。新型2.25Cr1Mo钢的强度和塑性优于其焊接接头。焊接线能量对材料抗拉强度和延展率的影响不明显。

(2) 新型2.25Cr1Mo钢及焊接试样在高温水蒸气中均发生单纯韧性断裂,基于断口形貌、强度和塑性的分析,3种试样在水蒸气环境中的SCC敏感性均较低。

(3) 新型2.25Cr1Mo钢焊接试样的焊接区耐腐蚀性较差,但氧化层内没有发生开裂,对SCC敏感性的影响不大。

参考文献

Pan X X.

Development of steam generator main materials for fast reactor

[J]. World Nonf. Met., 2017, (9): 181

[本文引用: 1]

潘相相.

钠冷快堆蒸汽发生器主材研究进展

[J]. 世界有色金属, 2017, (9): 181

[本文引用: 1]

Zhang Z, Hu Z F, Zhang L F, et al.

Effect of temperature and dissolved oxygen on stress corrosion cracking behavior of P92 ferritic-martensitic steel in supercritical water environment

[J]. J. Nucl. Mater., 2018, 498: 89

DOI      URL     [本文引用: 1]

Liu T G, Xia S, Shoji T.

Intergranular stress corrosion cracking in simulated BWR water of 316L stainless steels manufactured with different procedures

[J]. Corros. Sci., 2021, 183: 109344

DOI      URL    

Jiao Y, Zhang S H, Tan Y.

Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417

[本文引用: 1]

焦洋, 张胜寒, 檀玉.

核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展

[J]. 中国腐蚀与防护学报, 2021, 41: 417

[本文引用: 1]

Laha K, Rao K B S, Mannan S L.

Creep behaviour of post-weld heat-treated 2.25Cr-1Mo ferritic steel base, weld metal and weldments

[J]. Mat. Sci. Eng., 1990, 129A: 183

[本文引用: 1]

Raman R K S, Gnanamoorthy J B.

The oxidation behaviour of the weld metal, heat affected zone and base metal in the weldments of 2.25Cr-1Mo steel

[J]. Corros. Sci., 1993, 34: 1275

DOI      URL    

Cang Y, Huang Y H, Weng S, et al.

Effect of environmental variables on galvanic corrosion performance of welded joint of nuclear steam turbine rotor

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 318

[本文引用: 1]

苍雨, 黄毓晖, 翁硕 .

环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响

[J]. 中国腐蚀与防护学报, 2021, 41: 318

[本文引用: 1]

Ma C, Peng Q J, Han E-H, et al.

Review of stress corrosion cracking of structural materials in nuclear power plants

[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 37

[本文引用: 1]

马成, 彭群家, 韩恩厚 .

核电结构材料应力腐蚀开裂的研究现状与进展

[J]. 中国腐蚀与防护学报, 2014, 34: 37

[本文引用: 1]

Chung W C, Huang J Y, Tsay L W, et al.

Stress corrosion cracking in the heat-affected zone of A508 steel welds under high-temperature water

[J]. J. Nucl. Mater., 2011, 408: 125

DOI      URL     [本文引用: 1]

Hou J, Peng Q J, Takeda Y, et al.

Microstructure and stress corrosion cracking of the fusion boundary region in an alloy 182-A533B low alloy steel dissimilar weld joint

[J]. Corros. Sci., 2010, 52: 3949

DOI      URL     [本文引用: 1]

Peng Q J, Xue H, Hou J, et al.

Role of water chemistry and microstructure in stress corrosion cracking in the fusion boundary region of an Alloy 182-A533B low alloy steel dissimilar weld joint in high temperature water

[J]. Corros. Sci., 2011, 53: 4309

DOI      URL     [本文引用: 1]

Dong L J, Ma C, Peng Q J, et al.

Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment

[J]. J. Mater. Sci. Technol., 2020, 40: 1

DOI      URL     [本文引用: 2]

Dong L J, Peng Q J, Xue H, et al.

Correlation of microstructure and stress corrosion cracking initiation behaviour of the fusion boundary region in a SA508 Cl. 3-Alloy 52M dissimilar weld joint in primary pressurized water reactor environment

[J]. Corros. Sci., 2018, 132: 9

DOI      URL     [本文引用: 1]

Zhu R L, Wang J Q, Zhang Z M, et al.

Stress corrosion cracking of fusion boundary for 316L/52M dissimilar metal weld joints in borated and lithiated high temperature water

[J]. Corros. Sci., 2017, 120: 219

DOI      URL     [本文引用: 1]

Ming H L, Zhu R L, Zhang Z M, et al.

Microstructure, local mechanical properties and stress corrosion cracking susceptibility of an SA508-52M-316LN safe-end dissimilar metal weld joint by GTAW

[J]. Mater. Sci. Eng., 2016, 669A: 279

[本文引用: 2]

Dong L J, Zhang X L, Han Y L, et al.

Effect of surface treatments on microstructure and stress corrosion cracking behavior of 308L weld metal in a primary pressurized water reactor environment

[J]. Corros. Sci., 2020, 166: 108465

DOI      URL     [本文引用: 1]

Dong L J, Peng Q J, Han E-H, et al.

Microstructure and intergranular stress corrosion cracking susceptibility of a SA508-52M-316L dissimilar metal weld joint in primary water

[J]. J. Mater. Sci. Technol., 2018, 34: 1281

DOI      URL     [本文引用: 1]

Khan H I, Zhang N Q, Zhu Z L, et al.

Behavior and susceptibility to stress corrosion cracking of a nickel-based alloy in superheated steam and supercritical water

[J]. Mater. Corros., 2019, 70: 48

[本文引用: 2]

Yang L.

Influence of welding line energy on mechanical performance of WEL-TEN80A steel's welding joint

[J]. Hot Working Technol., 2005, (3): 46

[本文引用: 1]

杨莉.

焊接线能量对WEL-TEN80A钢焊接接头力学性能的影响

[J]. 热加工工艺, 2005, (3): 46

[本文引用: 1]

Yang Y L, Zhu Z P.

Effect of SMAW heat input on properties of Q345R steel welded joint

[J]. Energy Res. Manage., 2016, (3): 94

[本文引用: 1]

杨彦龙, 朱志平.

手工电弧焊线能量对Q345R焊接接头性能的影响

[J]. 能源研究与管理, 2016, (3): 94

[本文引用: 1]

Akbari-Garakani M, Mehdizadeh M.

Effect of long-term service exposure on microstructure and mechanical properties of Alloy 617

[J]. Mater. Des., 2011, 32: 2695

DOI      URL     [本文引用: 1]

Ampornrat P, Gupta G, Was G S.

Tensile and stress corrosion cracking behavior of ferritic-martensitic steels in supercritical water

[J]. J. Nucl. Mater., 2009, 395: 30

DOI      URL     [本文引用: 1]

Sun H Y, Yang H J, Wang M, et al.

The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water

[J]. J. Nucl. Mater., 2017, 484: 339

DOI      URL     [本文引用: 1]

Miwa Y, Jitsukawa S, Tsukada T.

Stress corrosion cracking susceptibility of a reduced-activation martensitic steel F82H

[J]. J. Nucl. Mater., 2009, 386-388: 703

DOI      URL     [本文引用: 1]

Maeng W Y, Lee J H, Kim U C.

Environmental effects on the stress corrosion cracking susceptibility of 3.5NiCrMoV steels in high temperature water

[J]. Corros. Sci., 2005, 47: 1876

DOI      URL     [本文引用: 1]

Wang J M, Su H Z, Ajmand F, et al.

Effects of corrosion potential, dissolved oxygen, and chloride on the stress corrosion cracking susceptibility of a 316NG stainless steel weld joint

[J]. Corrosion, 2019, 75: 946

DOI      URL     [本文引用: 1]

Dubey D, Kadali K, Panda S S, et al.

Comparative study on the stress corrosion cracking susceptibility of AZ80 and AZ31 magnesium alloys

[J]. Mater. Sci. Eng., 2020, 792A: 139793

[本文引用: 1]

Murkute P, Ramkumar J, Mondal K.

Stress corrosion cracking behavior of interstitial free steel via slow strain rate technique

[J]. J. Mater. Eng. Perform., 2016, 25: 2878

DOI      URL     [本文引用: 1]

Padekar B S, Raman R K S, Raja V S, et al.

Stress corrosion cracking of a recent rare-earth containing magnesium alloy, EV31A, and a common Al-containing alloy, AZ91E

[J]. Corros. Sci., 2013, 71: 1

DOI      URL     [本文引用: 1]

Winzer N, Atrens A, Song G, et al.

A Critical review of the stress corrosion cracking (SCC) of magnesium alloys

[J]. Adv. Eng. Mater., 2005, 7: 659

DOI      URL     [本文引用: 1]

Guo X L, Chen K, Gao W H, et al.

A research on the corrosion and stress corrosion cracking susceptibility of 316L stainless steel exposed to supercritical water

[J]. Corros. Sci., 2017, 127: 157

DOI      URL     [本文引用: 1]

Kuang W J, Was G S, Miller C, et al.

The effect of cold rolling on grain boundary structure and stress corrosion cracking susceptibility of twins in alloy 690 in simulated PWR primary water environment

[J]. Corros. Sci., 2018, 130: 126

DOI      URL     [本文引用: 1]

Ullrich C, Tillmann W, Rademacher H G, et al.

Investigation of the stress corrosion cracking behavior on T24 material under the operational conditions in the water wall

[J]. Int. J. Pres. Ves. Pip., 2021, 190: 104317

[本文引用: 1]

Li H Y, Cao Q, Zhu Z L.

High temperature oxidation behavior of ferritic steel in supercritical water at 550-700°C

[J]. Mater. High Temp., 2019, 36: 111

DOI      URL     [本文引用: 1]

Raman R K S, Muddle B C.

High temperature oxidation in the context of life assessment and microstructural degradation of weldments of 2.25Cr-1Mo steel

[J]. Int. J. Pres. Ves. Pip., 2002, 79: 585

[本文引用: 1]

/