Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 638-646    DOI: 10.11902/1005.4537.2021.173
  研究报告 本期目录 | 过刊浏览 |
Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响
温佳源1, 宋贵宏1(), 韦小园2, 赵鑫1, 吴玉胜1, 杜昊2(), 贺春林3
1.沈阳工业大学材料科学与工程学院 沈阳 110870
2.广东腐蚀科学与技术创新研究院 广州 510530
3.沈阳大学 辽宁省先进材料重点实验室 沈阳 110044
Influence of Cr Content on Corrosion Resistance of Composite Ni/Ni-Cr/Ni-Cr-Al-Si Films on Cu
WEN Jiayuan1, SONG Guihong1(), WEI Xiaoyuan2, ZHAO Xin1, WU Yusheng1, DU Hao2(), HE Chunlin3
1.School of Material Science and Technology, Shenyang University of Technology, Shenyang 110870, China
2.Institute of Corrosion Science and Technology, Guangzhou 510530, China
3.Liaoning Province Key Laboratory of Advanced Materials, Shenyang University, Shenyang 110044, China
全文: PDF(13079 KB)   HTML
摘要: 

为了解决Cu合金在海水中的腐蚀问题,促进Cu合金部件在海洋工程装备和设施中的应用,采用电镀与磁控溅射相结合的方法,首先在Cu衬底上电镀Ni层,随后在Ni层上溅射沉积Ni-Cr合金薄膜,最后在Ni-Cr层上再溅射沉积不同Cr含量的Ni-Cr-Al-Si合金薄膜,获得Ni/Ni-Cr/Ni-Cr-Al-Si梯度复合膜层,并研究了该梯度复合膜层的结构与腐蚀性能。结果表明:在海水中,Cr含量为43.05%的梯度复合膜层 (S2样品),其低频端阻抗值、容抗弧半径、最大相位角、电荷转移电阻Rf和腐蚀电位最大,表明其耐腐蚀性能最好。在所研究的范围内,梯度膜层的Ni-Cr-Al-Si表层中[Al]/[Cr]原子比率越大,其耐腐蚀性越好。梯度复合膜层的腐蚀过程主要为点蚀,膜层表面团簇的界面处是点蚀的中心。适当Cr含量的Ni/Ni-Cr/Ni-Cr-Al-Si梯度复合膜层具有很好的耐海水腐蚀和导热能力,适合作为海水中使用的Cu换热器表面的防护涂层。

关键词 Ni/Ni-Cr/Ni-Cr-Al-Si复合膜层耐腐蚀性Cr含量电化学阻抗谱阳极极化曲线    
Abstract

In order to enhance the corrosion resistance of Cu alloy to meet the requirements for their application in marine engineering equipment and facilities, a gradient composite coatings Ni/Ni-Cr/Ni-Cr-Al-Si were prepared on Cu plate by step-wise processes, i.e. firstly electrodeposited Ni film and then magnetron sputtered Ni-Cr alloy films and Ni-Cr-Al-Si alloy films in sequence. The structure and corrosion characteristics of the Ni/Ni-Cr/Ni-Cr-Al-Si gradient composite coatings with different Cr contents were characterized by means of X-ray diffractometer and electrochemical impedance spectroscope (EIS). The results show that among others, the gradient composite coating (S2 sample) with Cr content of 43.05% has the highest corrosion resistance, namely the highest low frequency impedance, capacitance arc radius, maximum phase angle, charge transfer resistance Rf and corrosion potential. The higher the atomic ratio of Al/Cr in the deposited Ni-Cr-Al-Si films is, the better the corrosive resistance of the deposited composite coating is. The corrosion process of the deposited gradient composite coating is mainly pitting corrosion, and the interface of the clusters on the surface of the films is the center of pitting corrosion. The Ni/Ni-Cr/Ni-Cr-Al-Si gradient composite coating with appropriate Cr content has good corrosion resistance in seawater and thermal conductivity, thus it is suitable as a protective coating for heat exchangers made of Cu alloys used in seawater.

Key wordsNi/Ni-Cr/Ni-Cr-Al-Si gradient composite film    corrosion resistance    Cr content    electrochemical impedance spectrum    anodic polarization curve
收稿日期: 2021-07-19     
ZTFLH:  TQ150.6  
基金资助:国家自然科学基金(51772193);兴辽英才计划(XLYC2008014)
通讯作者: 宋贵宏,杜昊     E-mail: songgh@sut.edu.cn;hdu@icost.ac.cn
Corresponding author: SONG Guihong,DU Hao     E-mail: songgh@sut.edu.cn;hdu@icost.ac.cn
作者简介: 温佳源,女,1997年生,硕士生

引用本文:

温佳源, 宋贵宏, 韦小园, 赵鑫, 吴玉胜, 杜昊, 贺春林. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
Jiayuan WEN, Guihong SONG, Xiaoyuan WEI, Xin ZHAO, Yusheng WU, Hao DU, Chunlin HE. Influence of Cr Content on Corrosion Resistance of Composite Ni/Ni-Cr/Ni-Cr-Al-Si Films on Cu. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 638-646.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.173      或      https://www.jcscp.org/CN/Y2022/V42/I4/638

SampleNumber of Cr particlesNiCrAlSi[Al]/[Cr]
S1040.2639.2414.725.270.3751
S2235.3543.0517.154.450.3983
S3433.3247.0515.454.180.3284
S4632.2149.6414.483.670.2917
表1  制备的Ni/Ni-Cr/Ni-Cr-Al-Si梯度复合膜层的化学成分
图1  S2样品的SEM-EDS面扫描
图2  不同Cr含量的Ni/Ni-Cr/Ni-Cr-Al-Si复合膜层的XRD图谱及晶格常数与Cr含量的关系
图3  不同Cr含量的Ni/Ni-Cr/Ni-Cr-Al-Si梯度复合膜层的表面形貌。
图4  不同Cr含量的Ni/Ni-Cr/Ni-Cr-Al-Si梯度复合膜层的截面形貌
图5  梯度复合膜层的电化学阻抗谱及样品最大阻抗值与Cr含量的关系
图6  梯度复合膜层试样的EIS图及最大相位角与Cr含量的关系
图7  梯度复合膜层模拟腐蚀反应的等效电路图
SampleRsΩ·cm2Q1μF·cm-2ncRcΩ·cm2Q2μF·cm-2ntRfΩ·cm2
S16.9482.056×10-50.848710.54.769×10-50.86911.445×104
S26.4338.499×10-50.844866.933.359×10-50.92895.547×104
S34.9632.481×10-40.836628.086.782×10-311516
S45.6711.096×10-40.864926.645.491×10-31392.5
表2  复合膜层等效电路及标准腐蚀参数的EIS数据
图8  复合膜层试样的阳极极化曲线
图9  复合膜层腐蚀后的表面形貌
1 Dong C L, Bai X Q, Yan X P, et al. Research status and advances on tribological study of materials under ocean environment [J]. Tribology, 2013, 33: 311
1 董从林, 白秀琴, 严新平 等. 海洋环境下的材料摩擦学研究进展与展望 [J]. 摩擦学学报, 2013, 33: 311
2 Lin Z H, Ming N X, He C, et al. Effect of hydrostatic pressure on corrosion behavior of X70 steel in simulated sea water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 307
2 林朝晖, 明南希, 何川 等. 静水压力对X70钢在海洋环境中腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 307
3 Li G Q, Li G F, Wang J Q, et al. Microbiologically influenced corrosion mechanism and protection of offshore pipelines [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 429
3 李光泉, 李广芳, 王俊强 等. 临海管道微生物腐蚀损伤机制与防护 [J]. 中国腐蚀与防护学报, 2021, 41: 429
4 Ye Y W, Wang Y X, Ma X L, et al. Tribocorrosion behaviors of multilayer PVD DLC coated 304L stainless steel in seawater [J]. Diam. Relat. Mater., 2017, 79: 70
doi: 10.1016/j.diamond.2017.09.002
5 Liang G, Zhu S, Wang W Y, et al. Research status and development trend of aluminum alloy anticorrosion technology [J]. Mater. Rep., 2020, 34(Z2): 1429
5 梁广, 朱胜, 王文宇 等. 铝合金腐蚀防护技术研究现状及发展趋势 [J]. 材料导报, 2020, 34(Z2): 1429
6 Ren X Y. Study on the preparation and catalytic performance of corrosion-resistant composite metal materials [J]. World Nonferr. Met., 2019, (20): 191
6 任显赟. 耐腐蚀复合金属材料的制备与催化性能研究 [J]. 世界有色金属, 2019, (20): 191
7 Xia Q Q, Zhu T, Xu Y. Analysis of structural corrosion allowance requirement standards for naval ship [J]. Ship Standard. Eng., 2020, 53(5): 6
7 夏齐强, 朱韬, 徐忆. 舰船结构腐蚀余量要求标准分析 [J]. 船舶标准化工程师, 2020, 53(5): 6
8 Jiang Z, Zhang C H, Du J, et al. A pipeline was protected by impressed current cathodic protection and sacrificial anode external corrosion factors and control measures [J]. Total Corros. Control, 2021, 35(4): 105
8 蒋志, 张昌会, 杜涓 等. 某采用外加电流阴极保护与牺牲阳极联合保护管线外腐蚀因素及控制措施 [J]. 全面腐蚀控制, 2021, 35(4): 105
9 Yan H J. Study on preparation technology and properties of Ni-Cr-Al-Si-Y2O3-B alloy system [D]. Nanning: Guangxi University, 2018
9 闫海居. Ni-Cr-Al-Si-Y2O3-B合金体系的制备工艺及性能研究[D]. 南宁: 广西大学, 2018
10 Chen M F, Sun J S, You C, et al. Effect of chromium and silicon on microstructure and corrosion resistance of Ni-based superalloy [J]. J. Tianjin Inst. Technol., 2000, 16(1): 6
10 陈民芳, 孙家枢, 由臣 等. 铬、硅含量对镍基高温合金组织及耐蚀性的影响 [J]. 天津理工学院学报, 2000, 16(1): 6
11 Singh H, Kalsi S B S, Sidhu T S, et al. Microstructure of Ni-Cr-based coating for corrosive conditions [J]. J. Therm. Spray. Technnol., 2019, 28: 1420
12 Firouzi-Nerbin H, Nasirpouri F, Moslehifard E. Pulse electrodeposition and corrosion properties of nanocrystalline nickel-chromium alloy coatings on copper substrate [J]. J. Alloy. Compd., 2020, 822: 153712
doi: 10.1016/j.jallcom.2020.153712
13 Tseng Y T, Lin J C, Jang J S C, et al. Three-dimensional amorphous Ni-Cr alloy printing by electrochemical additive manufacturing [J]. ACS. Appl. Electron. Mater., 2020, 2: 3538
doi: 10.1021/acsaelm.0c00570
14 Demir M, Kanca E, Karahan İ H. Characterization of electrodeposited Ni-Cr/hBN composite coatings [J]. J. Alloy. Compd., 2020, 844: 155511
doi: 10.1016/j.jallcom.2020.155511
15 Hou W, Ding Y H, Li J Z, et al. Research on process of hard chromium electroplating with trivalent chromium sulfate electrolyte [J]. New Technol. New Process, 2013, (11): 89
15 侯蔚, 丁运虎, 李家柱 等. 硫酸盐体系三价铬硬铬电镀工艺研究 [J]. 新技术新工艺, 2013, (11): 89
16 Wang W Q, Li Y Q, Li X, et al. Microstructures and properties of Ni-Cr-B-Si alloy powders prepared by selective laser melting [J]. Mater. Rep., 2020, 34(2): 2077
16 王文权, 李雅倩, 李欣 等. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能 [J]. 材料导报, 2020, 34(2): 2077
17 Guo X H, Shen J, Liu S, et al. The corrosion behavior of Ni-Cr-Al alloys exposed to mixed oxidizing-carburizing atmospheres at 800 ℃ [J]. Corros. Sci., 2020, 176: 108877
doi: 10.1016/j.corsci.2020.108877
18 Li Y R, Lin Y, Tao B W. Electronic Materials [M]. Beijing: Tsinghua University Press, 2013
18 李言荣, 林媛, 陶伯万. 电子材料 [M]. 北京: 清华大学出版社, 2013
19 Xie M Y, Wang C, Zhang P Y, et al. Effects of composite strengthening on microstructure and mechanical property of K403 aluminized alloy [J]. China Surf. Eng., 2018, 31(1): 26
19 谢孟芸, 汪诚, 张佩宇 等. 复合强化对渗铝K403合金组织和力学性能的影响 [J]. 中国表面工程, 2018, 31(1): 26
20 Greeff A P, Louw C W, Swart H C. The oxidation of industrial FeCrMo steel [J]. Corros. Sci., 2000, 42: 1725
doi: 10.1016/S0010-938X(00)00026-3
21 Liu H L, Teng X Y, Wang Z F, et al. Oxidation resistance of Fe-Cr-Ni-N heat-resistance steel [J]. Foundry Technol., 2001, (6): 55
21 刘含莲, 滕新营, 王执福 等. Fe-Cr-Ni-N高温耐热钢的抗氧化性研究 [J]. 铸造技术, 2001, (6): 55
22 Cho B, Choi E, Chung S, et al. A novel Cr2O3 thin film on stainless steel with high sorption resistance [J]. Surf. Sci., 1999, 439: L799
doi: 10.1016/S0039-6028(99)00815-8
23 Song G H, Lou Z, Xiong G L, et al. Preparation, structure and performance of Ti/TiN multilayer film on surface of copper alloy [J]. J. Shenyang Univer. Technol., 2012, 34: 391
23 宋贵宏, 娄茁, 熊光连 等. 铜合金表面Ti/TiN多层膜的制备、结构及其性能 [J]. 沈阳工业大学学报, 2012, 34: 391
24 Yang H Y, Chen Q S, Zhang R Q, et al. Effect of deposition temperature on microstructures and properties of FeCrAl coating prepared by magnetron sputtering [J]. Nucl. Power Eng., 2020, 41(suppl.1) : 200
24 杨红艳, 陈青松, 张瑞谦 等. 沉积温度对磁控溅射制备FeCrAl涂层微观结构及性能的影响 [J]. 核动力工程, 2020, 41(): 200
25 Cao Z Q, Yu L, Zhang K. Effect of Al addition on high temperature oxidation behavior of Cu-Ni-Cr alloy [J]. Rare Met. Mater. Eng., 2013, 42: 2149
25 曹中秋, 于龙, 张轲. 添加Al对Cu-Ni-Cr合金高温氧化行为的影响 [J]. 稀有金属材料与工程, 2013, 42: 2149
26 Huang Y, Lu S Q, Zheng H Z. Effect of Al on high temperature oxidation resistance of Cr-20Nb alloy [J]. J. Aeronaut. Mater., 2009, 29(6): 8
26 黄毅, 鲁世强, 郑海忠. 合金元素Al对Cr-20Nb合金高温抗氧化性能的影响 [J]. 航空材料学报, 2009, 29(6): 8
27 Xian X B, Wang Q F, Liu K Z, et al. Corrosion behavior of the vacuum cathodic Arc, deposited TiN/Ti coatings [J]. Rare Met. Mater. Eng., 2005, 34: 1774
27 鲜晓斌, 王庆富, 刘柯钊 等. 阴极电弧离子沉积TiN/Ti镀层腐蚀特性 [J]. 稀有金属材料与工程, 2005, 34(11): 1774
28 Roach M, Parsell D, Gardner S, et al. Correlation of corrosion andsurface analyses for Ni-Cr alloys [J]. Crit. Rev. Biomed. Eng., 1998, (26): 391
29 Song G H, Jin T, Xiong Y, et al. Deposition of the Ti/TiN multilayer films on Cu filament [J]. Vacuum, 2011, 48(4): 61
29 宋贵宏, 金弢, 熊焰 等. Cu丝上沉积Ti/TiN多层膜的研究 [J]. 真空, 2011, 48(4): 61
[1] 梁泰贺, 朱雪梅, 张振卫, 王新建, 张彦生. 铝硅复合对Fe32Mn7Cr3Al2Si钢氧化改性层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[2] 王淇萱, 吕文生, 杨鹏, 诸利一, 廖文景, 朱远乐. 尾矿库埋入式传感器不锈钢外壳腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[3] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[4] 郑世恩, 潘应君, 张恒, 柯德庆, 杨岭, 朱星宇. 304不锈钢表面硼化物熔覆层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[5] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[6] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[7] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[8] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[9] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[10] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[11] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[13] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[14] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[15] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.