Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 85-92    DOI: 10.11902/1005.4537.2021.001
  研究报告 本期目录 | 过刊浏览 |
氮掺杂对碳纳米颗粒缓蚀性能的影响
王晶, 王斯琰, 张崇, 王文涛, 曹星, 樊宁, 徐宏妍()
中北大学材料科学与工程学院 太原 030051
Effect of Nitrogen Doping on Corrosion Inhibition Performance of Carbon Nanoparticles
WANG Jing, WANG Siyan, ZHANG Chong, WANG Wentao, CAO Xing, FAN Ning, XU Hongyan()
School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
全文: PDF(5840 KB)   HTML
摘要: 

通过热分解方法,以柠檬酸为碳源制备出无氮碳纳米颗粒 (CNPs);以柠檬酸为碳源、尿素为氮源制备出氮掺杂碳纳米颗粒 (N-CNPs)。采用原子力显微镜、红外光谱和Raman光谱表征碳纳米颗粒的结构,利用失重实验、电化学测试、激光共聚焦扫描显微镜观察等研究碳纳米颗粒在1 mol/L HCl溶液中对Q235钢缓蚀性能。结果表明:两种碳纳米颗粒均属于混合型缓蚀剂,50 mg/L CNPs的缓蚀效率为37.6%;而N-CNPs的缓蚀效率明显提高,达到90.96%。

关键词 碳纳米颗粒缓蚀剂电化学Q235钢    
Abstract

Nitrogen-free carbon nanoparticles (CNPs) were prepared by thermal decomposition method with citric acid as carbon source. While nitrogen-doped carbon nanoparticles (N-CNPs) were prepared by thermal decomposition method with citric acid as carbon source and urea as nitrogen source. The above nano-particles were characterized by means of atomic force microscope, infrared spectroscope and Raman spectroscope, and their corrosion inhibition performance for Q235 steel in 1 mol/L HCl solution was comparatively studied by mass loss method, electrochemical means and laser confocal scanning microscope. The results showed that the two carbon nanoparticles belonged to mixed-type corrosion inhibitors, the corrosion inhibition efficiency of N-free carbon nanoparticles was 37.5%, and the corrosion inhibition efficiency of the carbon nanoparticles was significantly improved after being doped with N. The corrosion inhibition efficiency of N-CNPs reached 90.96%.

Key wordscarbon nanoparticle    corrosion inhibitor    electrochemical    Q235 steel
收稿日期: 2021-01-04     
ZTFLH:  TG174.42  
基金资助:山西省自然科学基金(201901D111175)
通讯作者: 徐宏妍     E-mail: xuhongyan@nuc.edu.cn
Corresponding author: XU Hongyan     E-mail: xuhongyan@nuc.edu.cn
作者简介: 王晶,女,1996年生,硕士生

引用本文:

王晶, 王斯琰, 张崇, 王文涛, 曹星, 樊宁, 徐宏妍. 氮掺杂对碳纳米颗粒缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
Jing WANG, Siyan WANG, Chong ZHANG, Wentao WANG, Xing CAO, Ning FAN, Hongyan XU. Effect of Nitrogen Doping on Corrosion Inhibition Performance of Carbon Nanoparticles. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 85-92.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.001      或      https://www.jcscp.org/CN/Y2022/V42/I1/85

图1  CNPs和N-CNPs的AFM二维图和高度图
图2  CNPs和N-CNPs的FT-IR谱
图3  N-CNPs的Raman谱
图4  Q235钢在含CNPs和N-CNPs的1 mol/L 盐酸溶液中的腐蚀速率和缓蚀效率
InhibitorConcentrationInhibition efficiency
Pyridazinium-based ionic liquids[13]1000 mg/L84.0%
Schinopsis lorentzii extract[14]2000 mmol/L63.0%
Soybean meal extract[15]200 mg/L80%
N-CDs[16]100 mg/L88.93%
N-CNPs50 mg/L90.96%
表1  N-CNPs与已报道的缓蚀剂对Q235钢在1 mol/L盐酸溶液中缓蚀效率的比较
图5  Q235钢在3种溶液中的动电位极化曲线及其对应的Evans极化图
ConcentrationEcorr / V vs. SCEIcorr / A·cm-2ba / mV·dec-1bc / mV·dec-1Inhibition efficiency
1 mol/L HCl-0.442.441×10-489.57492.868---
50 mg/L CNPs-0.4628.097×10-583.93592.58466.82%
50 mg/L N-CNPs-0.4823.029×10-593.49292.80787.59%
表2  Q235钢在3种溶液中的极化曲线拟合参数
图6  Q235钢在3种溶液中的电化学阻抗谱及等效电路图
图7  Q235钢浸入未添加和添加缓蚀剂的1 mol/L盐酸溶液中24 h后的LSCM图像
Concentration / mg·L-1L1 / HRs / Ω·cm2Qdl / F·cm-2n1Rct / Ω·cm2L2 / HRL / Ω·cm2χ2Inhibition efficiency
1 mol/L HCl7.934×10-71.8618.095×10-40.91485.2------2.87×10-4---
50 mg/L CNPs6.652×10-71.7312.341×10-40.902202.8139.315.954.09×10-456.5%
50 mg/L N-CNPs6.409×10-71.7008.974×10-50.888660.3300.230.36.43×10-487.10%
表3  Q235钢在3种溶液中的电化学阻抗谱拟合参数
图8  Q235钢在含CNPs和N-CNPs的1 mol/L盐酸溶液中的Langmuir吸附等温线
1 Yilmaz N, Fitoz A, Ergun Ÿ, et al. A combined electrochemical and theoretical study into the effect of 2-((thiazole-2-ylimino) methyl) phenol as a corrosion inhibitor for mild steel in a highly acidic environment [J]. Corros. Sci., 2016, 111: 110
2 Huang W H, Huang X, Xian L, et al. Complex corrosion inhibitor of alanine in sulfuric acid medium [J]. Surf. Technol., 2019, 48(11): 356
2 黄文恒, 黄茜, 鲜磊等. 硫酸介质中丙氨酸复合缓蚀剂的研究 [J]. 表面技术, 2019, 48(11): 356
3 Qiang Y J, Zhang S T, Zhao H C, et al. Enhanced anticorrosion performance of copper by novel N-doped carbon dots [J]. Corros. Sci., 2019, 161: 108193
4 Cen H Y, Chen Z Y, Guo X P. N, S co-doped carbon dots as effective corrosion inhibitor for carbon steel in CO2-saturated 3.5%NaCl solution [J]. J. Taiwan Inst. Chem. Eng., 2019, 99: 224
5 Cui M J, Ren S M, Xue Q J, et al. Carbon dots as new eco-friendly and effective corrosion inhibitor [J]. J. Alloy. Compd., 2017, 726: 680
6 Gupta R K, Malviya M, Ansari K R, et al. Functionalized graphene oxide as a new generation corrosion inhibitor for industrial pickling process: DFT and experimental approach [J]. Mater. Chem. Phys., 2019, 236: 121727
7 Baig N, Chauhan D S, Saleh T A, et al. Diethylenetriamine functionalized graphene oxide as a novel corrosion inhibitor for mild steel in hydrochloric acid solutions [J]. New J. Chem., 2019, 43: 2328
8 Liu Y Y, Ge Z, Li Z J, et al. High-power instant-synthesis technology of carbon nanomaterials and nanocomposites [J]. Nano Energy, 2021, 80: 105500
9 Liu Z X, Ye Y W, Chen H. Corrosion inhibition behavior and mechanism of N-doped carbon dots for metal in acid environment [J]. J. Clean. Prod., 2020, 270: 122458
10 Ye Y W, Zhang D W, Zou Y J, et al. A feasible method to improve the protection ability of metal by functionalized carbon dots as environment-friendly corrosion inhibitor [J]. J. Clean. Prod., 2020, 264: 121682
11 Yogesh G K, Shuaib E P, Kalai Priya A, et al. Synthesis of water-soluble fluorescent carbon nanoparticles (CNPs) from nanosecond pulsed laser ablation in ethanol [J]. Opt. Laser Technol., 2021, 135: 106717
12 Dong Y Q, Shao J W, Chen C Q, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid [J]. Carbon, 2012, 50: 4738
13 El-Hajjaji F, Messali M, Aljuhani A, et al. Pyridazinium-based ionic liquids as novel and green corrosion inhibitors of carbon steel in acid medium: Electrochemical and molecular dynamics simulation studies [J]. J. Mol. Liq., 2018, 249: 997
14 Gerengi H, Sahin H I. Schinopsis lorentzii extract as a green corrosion inhibitor for low carbon steel in 1 M HCl solution [J]. Ind. Eng. Chem. Res., 2012, 51: 780
15 Wang X, Ren S F, Zhang D X, et al. Inhibition effect of soybean meal extract on corrosion of Q235 steel in hydrochloric acid medium [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 267
15 王霞, 任帅飞, 张代雄等. 豆粕提取物在盐酸中对Q235钢的缓蚀性能 [J]. 中国腐蚀与防护学报, 2019, 39: 267
16 Ye Y W, Jiang Z L, Zou Y J, et al. Evaluation of the inhibition behavior of carbon dots on carbon steel in HCl and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 43: 144
17 Sanaei Z, Ramezanzadeh M, Bahlakeh G, et al. Use of Rosa canina fruit extract as a green corrosion inhibitor for mild steel in 1 M HCl solution: A complementary experimental, molecular dynamics and quantum mechanics investigation [J]. J. Ind. Eng. Chem., 2019, 69: 18
18 Amin M A, Abd El-Rehim S S, El-Sherbini E E F, et al. The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid [J]. Electrochim. Acta, 2007, 52: 3588
19 Kowsari E, Arman S Y, Shahini M H, et al. In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1 M HCl solution [J]. Corros. Sci., 2016, 112: 73
20 Ebenso E E, Kabanda M M, Murulana L C, et al. Electrochemical and quantum chemical investigation of some azine and thiazine dyes as potential corrosion inhibitors for mild steel in hydrochloric acid solution [J]. Ind. Eng. Chem. Res., 2012, 51: 12940
21 Ye Y W, Zou Y J, Jiang Z L, et al. An effective corrosion inhibitor of N doped carbon dots for Q235 steel in 1 M HCl solution [J]. J. Alloy. Compd., 2020, 815: 152338
22 Sığırcık G, Tüken T, Erbil M. Assessment of the inhibition efficiency of 3, 4-diaminobenzonitrile against the corrosion of steel [J]. Corros. Sci., 2016, 102: 437
23 Hu Z Y, Meng Y B, Ma X M, et al. Experimental and theoretical studies of benzothiazole derivatives as corrosion inhibitors for carbon steel in 1 M HCl [J]. Corros. Sci., 2016, 112: 563
[1] 王中琪, 许春香, 杨丽景, 田林海, 黄涛, 史义轩, 杨文甫. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[2] 朱海林, 陆小猛, 李晓芬, 王俊霞, 刘建华, 冯丽, 马雪梅, 胡志勇. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
[3] 阎竹, 张晨阳, 王立新, 袁国, 张元祥, 方烽, 王洋, 康健. 结构稳定性对Zr基非晶合金电化学腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 79-84.
[4] 李鸿瑾, 王歧山, 廖子涵, 孙祥锐, 孙晖, 张新阳, 陈旭. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
[5] 胡慧慧, 陈长风. 温度影响席夫碱缓蚀剂吸附的机理研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 786-794.
[6] 王丽姿, 黄苗, 李向红. 核桃青皮提取物与碘化钾对钢在柠檬酸中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2021, 41(6): 819-827.
[7] 王来滨, 刘侠和, 王梅, 高俊杰. 三价铬基转化膜生长动力学研究现状及进展[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[8] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[9] 伊光辉, 郑大江, 宋光铃. 酸洗对316L不锈钢表面形貌、耐蚀性能及表面光学常数的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[10] 王鼎立, 李勇明, 蒋立明, 陈波, 骆昂. 新型表面活性剂作为油气田酸化缓蚀剂的制备及其性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 542-548.
[11] 陈土春, 向军淮, 江龙发, 熊剑, 白凌云, 徐勋虎, 徐鑫成. Q235钢在氧化性含Cl气氛中的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 560-564.
[12] 周浩, 王胜利, 刘雪峰, 尤世界. 新型复合缓蚀剂对青铜文物的防腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
[13] 谭伯川, 张胜涛, 李文坡, 向斌, 强玉杰. 食用香料1,4-二硫-2,5-二醇环保型缓蚀剂对X70钢在0.5 mol/L H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 469-476.
[14] 王军, 陈军君, 谢亿, 徐松, 刘兰兰, 吴堂清, 尹付成. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[15] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.