Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (6): 786-794    DOI: 10.11902/1005.4537.2020.156
  研究报告 本期目录 | 过刊浏览 |
温度影响席夫碱缓蚀剂吸附的机理研究
胡慧慧, 陈长风()
中国石油大学 (北京) 新能源与材料学院 北京 102249
Mechanism of Temperature Influence on Adsorption of Schiff Base
HU Huihui, CHEN Changfeng()
School of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
全文: PDF(4705 KB)   HTML
摘要: 

研究了所合成的两种含有苯基基团的席夫碱缓蚀剂 (BB-S缓蚀剂和B-S缓蚀剂) 在不同温度下对N80钢在0.5%盐酸溶液中的缓蚀作用,探讨了温度影响席夫碱缓蚀剂的吸附机理。结果表明,BB-S缓蚀剂和B-S缓蚀剂的缓蚀效率随着温度的升高而降低,且B-S缓蚀剂的缓蚀效率在不同温度下始终大于BB-S缓蚀剂的缓蚀效率。分子动力学和量子化学计算方法表明,两种席夫碱缓蚀剂的缓蚀效率随温度的升高而降低,该现象与席夫碱缓蚀剂中苯环较大的空间位阻、分子热运动、分子吸附构型以及前线轨道能级密切相关。

关键词 席夫碱缓蚀剂温度吸附苯环脱附    
Abstract

Two Schiff base corrosion inhibitors containing phenyl groups, namely BB-S corrosion inhibitor and B-S corrosion inhibitor are synthesized, and then their corrosion inhibition behavior for the corrosion of N80 steel in 0.5% (mass fraction) HCl solution at temperatures within the range of 30~90 ℃ was assessed. The effect of temperature on the adsorption mechanism of Schiff base corrosion inhibitor was also discussed. The results show that the corrosion inhibition efficiency of corrosion inhibitors BB-S and B-S all decreases with the increasing temperature, while the corrosion inhibition efficiency of B-S is always greater than that of BB-S at different temperatures. Results of molecular dynamics and quantum chemistry calculation indicate that the decrease in corrosion inhibition efficiency of the two Schiff base corrosion inhibitors with the increasing temperature may be closely related to the larger steric hindrance of the benzene ring in the Schiff base corrosion inhibitor, molecular thermal movement, molecular adsorption configuration and frontline orbital energy. This study is of great significance for understanding the effect of temperature on the corrosion inhibition mechanism of corrosion inhibitors.

Key wordsSchiff base corrosion    temperature    adsorption    benzene ring    desorption
收稿日期: 2020-08-31     
ZTFLH:  TB37  
通讯作者: 陈长风     E-mail: chen_c_f@163.com
Corresponding author: CHEN Changfeng     E-mail: chen_c_f@163.com
作者简介: 胡慧慧,女,1995年生,硕士生

引用本文:

胡慧慧, 陈长风. 温度影响席夫碱缓蚀剂吸附的机理研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 786-794.
Huihui HU, Changfeng CHEN. Mechanism of Temperature Influence on Adsorption of Schiff Base. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 786-794.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.156      或      https://www.jcscp.org/CN/Y2021/V41/I6/786

图1  两种缓蚀剂的合成反应
图2  两种席夫碱缓蚀剂的红外光谱图
图3  N80钢在不同温度下添加BB-S和B-S缓蚀剂的缓蚀效率
图4  N80钢在不同温度下添加BB-S和B-S缓蚀剂的腐蚀形貌
图5  N80钢在不同温度下添加BB-S和B-S缓蚀剂的极化曲线
Corrosion inhibitorT / ℃ba / mVbc / mVI / A·cm-2
B-S inhibitor3064.092373.65560.2356
5045.560162.53230.1358
7062.793469.61430.0863
9057.780373.67060.0405
BB-S inhibitor3063.801278.32090.5244
5075.692370.74120.4657
7071.274171.16140.3158
9064.520477.30360.1335
表1  在0.5 mol·L-1 HCl溶液中含B-S和BB-S缓蚀剂的N80碳钢不同温度下的电化学极化参数
图6  N80钢在不同温度下添加BB-S和B-S缓蚀剂的电化学阻抗谱
图7  N80钢在添加B-S和BB-S缓蚀剂的溶液中阻抗谱的等效电路图
Corrosion inhibitorT / ℃RsΩ·cm2Cdl10-5 F·cm-2RctΩ·cm2Cf10-5 F·cm-2RfΩ·cm2
B-S inhibitor302.0518.026749.0414.53921.540
501.6798.071732.0026.61422.951
701.5348.908171.3875.13217.040
901.77311.9885.0565.12212.640
BB-S inhibitor302.6969.542705.3455.35014.160
502.2989.798545.5674.32718.130
702.57610.926168.3455.02722.950
902.24516.75093.0324.98010.930
表2  在0.5 mol·L-1 HCl溶液中不同温度下的N80钢添加缓蚀剂的阻抗谱参数
图8  前沿轨道能级图
Corrosion inhibitorBB-SB-S
HOMO-5.223-4.974
LUMO-2.310-2.110
ΔE2.9132.864
I5.2234.974
A2.3102.110
η1.45651.432
σ0.68660.698
χ3.76653.542
表3  B-S和BB-S缓蚀剂的量子化学参数
图9  B-S和BB-S缓蚀剂在Fe(110) 表面吸附的最稳定构型
T / ℃BB-SB-S
30-1955.26-2012.32
50-1885.73-1943.07
70-1848.86-1942.23
90-1846.54-1930.78
表4  B-S和BB-S缓蚀剂在不同温度下的吸附能
图10  B-S和BB-S缓蚀剂的缓蚀机理图
1 Djellab M, Bentrah H, Chala A, et al. Synergistic effect of halide ions and gum Arabic for the corrosion inhibition of API5L X70 pipeline steel in H2SO4 [J]. Mater. Corros., 2019, 70: 149
2 Shihab M S, Mahmood A F. Experimental and theoretical study of some N-pyridinium salt derivatives as corrosion inhibitors for mild-steel in acidic media [J]. Russ. J. Appl. Chem., 2016, 89: 505
3 Bai Y L, Shen G L, Qin Q Y, et al. Effect of thiourea imidazoline quaternary ammonium salt corrosion inhibitor on corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 60
3 白云龙, 沈国良, 覃清钰等. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 60
4 Kokalj A, Peljhan S, Finšgar M, et al. What determines the inhibition effectiveness of ATA, BTAH, and BTAOH corrosion inhibitors on copper [J]. J. Am. Chem. Soc., 2010, 132: 16657
5 Zhao H X, Zhang X H, Ji L, et al. Quantitative structure-activity relationship model for amino acids as corrosion inhibitors based on the support vector machine and molecular design [J]. Corros. Sci., 2014, 83: 261
6 Chauhan D S, Mazumder M A J, Quraishi M A, et al. Chitosan-cinnamaldehyde Schiff base: a bioinspired macromolecule as corrosion inhibitor for oil and gas industry [J]. Int. J. Biol. Macromol., 2020, 158: 127
7 Chen G H. Study of the inhibition mechanism and synergistic effect of corrosion inhibitors in sweet system [D]. Beijing: Beijing University of Chemical Technology, 2012
7 陈国浩. 二氧化碳腐蚀体系缓蚀剂的缓蚀机理及缓蚀协同效应研究 [D]. 北京: 北京化工大学, 2012
8 Lv X H, Zhang Y, Yan Y L, et al. Performance evaluation and adsorption behavior of two new mannich base corrosion inhibitors [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 31
8 吕祥鸿, 张晔, 闫亚丽等. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 31
9 Luna M C, Le Manh T, Sierra R C, et al. Study of corrosion behavior of API 5L X52 steel in sulfuric acid in the presence of ionic liquid 1-ethyl 3-methylimidazolium thiocyanate as corrosion inhibitor [J]. J. Mol. Liq., 2019, 289: 111106
10 Messali M, Larouj M, Lgaz H, et al. A new schiff base derivative as an effective corrosion inhibitor for mild steel in acidic media: Experimental and computer simulations studies [J]. J. Mol. Struct., 2018, 1168: 39
11 Wang X, Ren S F, Zhang D X, et al. Inhibition effect of soybean meal extract on corrosion of Q235 steel in hydrochloric acid medium [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 267
11 王霞, 任帅飞, 张代雄等. 豆粕提取物在盐酸中对Q235钢的缓蚀性能 [J]. 中国腐蚀与防护学报, 2019, 39: 267
12 Farhadian A, Rahimi A, Safaei N, et al. A theoretical and experimental study of castor oil-based inhibitor for corrosion inhibition of mild steel in acidic medium at elevated temperatures [J]. Corros. Sci., 2020, 175: 108871
13 Verma C, Ebenso E E, Quraishi M A. Molecular structural aspects of organic corrosion inhibitors: influence of -CN and -NO2 substituents on designing of potential corrosion inhibitors for aqueous media [J]. J. Mol. Liq., 2020, 316: 113874
14 Zhang J T, Li Q D, Zhao J. Research progress of acidizing corrosion inhibitors in oil/gas well [J]. Corros. Prot., 2014, 35: 593
14 张娟涛, 李谦定, 赵俊. 油气井酸化缓蚀剂研究进展 [J]. 腐蚀与防护, 2014, 35: 593
15 Okafor P C, Liu X, Zheng Y G. Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution [J]. Corros. Sci., 2009, 51: 761
16 Chafiq M, Chaouiki A, Damej M, et al. Bolaamphiphile-class surfactants as corrosion inhibitor model compounds against acid corrosion of mild steel [J]. J. Mol. Liq., 2020, 309: 113070
17 Verma C, Haque J, Ebenso E E, et al. Melamine derivatives as effective corrosion inhibitors for mild steel in acidic solution: chemical, electrochemical, surface and DFT studies [J]. Results. Phys., 2018, 9: 100
18 Liu J G, Gao G, Xu Y Z, et al. Corrosion inhibition performance of imidazoline derivatives [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 523
18 刘建国, 高歌, 徐亚洲等. 咪唑啉类衍生物缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2018, 38: 523
19 Zhang J L, Zhang L J, Tao G. A novel and high-efficiency inhibitor of 5-(4-methoxyphenyl)-3h-1, 2-dithiole-3-thione for copper corrosion inhibition in sulfuric acid at different temperatures [J]. J. Mol. Liq., 2018, 272: 369
20 Nabatipour S, Mohammadi S, Mohammadi A. Synthesis and comparison of two chromone based Schiff bases containing methoxy and acetamido substitutes as highly sustainable corrosion inhibitors for steel in hydrochloric acid [J]. J. Mol. Struct., 2020, 1217: 128367
21 Soliman S A, Metwally M S, Selim S R, et al. Corrosion inhibition and adsorption behavior of new Schiff base surfactant on steel in acidic environment: Experimental and theoretical studies [J]. J. Ind. Eng. Chem., 2014, 20: 4311
22 Chauhan D S, Verma C, Quraishi M A. Molecular structural aspects of organic corrosion inhibitors: Experimental and computational insights [J]. J. Mol. Struct., 2021, 1227: 129374
23 Zhang D Q, Tang Y M, Qi S J, et al. The inhibition performance of long-chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl [J]. Corros. Sci., 2016, 102: 517
24 Dražić D M, Vračar L, Dražić V J. The kinetics of inhibitor adsorption on iron [J]. Electrochim. Acta, 1994, 39: 1165
25 De Assis S L, Wolynec S, Costa I. Corrosion characterization of titanium alloys by electrochemical techniques [J]. Electrochim. Acta, 2006, 51: 1815
26 Wang Z B, Hu H X, Liu C B, et al. The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05 M sulfuric acid [J]. Electrochim. Acta, 2014, 135: 526
27 Deng S D, Li X H, Xie X G. Hydroxymethyl urea and 1, 3-bis (hydroxymethyl) urea as corrosion inhibitors for steel in HCl solution [J]. Corros. Sci., 2014, 80: 276
28 Wang H Y, Wei Y H, Du H Y, et al. Corrosion inhibition and adsorption behavior of green corrosion inhibitor SDDTC on AZ31B Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 62
28 王海媛, 卫英慧, 杜华云等. 绿色缓蚀剂SDDTC对AZ31B镁合金的缓蚀作用及吸附行为 [J]. 中国腐蚀与防护学报, 2018, 38: 62
29 Solomon M M, Umoren S A, Quraishi M A, et al. Effect of akyl chain length, flow, and temperature on the corrosion inhibition of carbon steel in a simulated acidizing environment by an imidazoline-based inhibitor [J]. J. Pet. Sci. Eng., 2020, 187: 106801
30 Zhao Q, Guo J X, Cui G D, et al. Chitosan derivatives as green corrosion inhibitors for P110 steel in a carbon dioxide environment [J]. Colloids Surf., 2020, 194B: 111150
31 Jafari H, Danaee I, Eskandari H, et al. Electrochemical and theoretical studies of adsorption and corrosion inhibition of N, N’-Bis (2-hydroxyethoxyacetophenone)-2, 2-dimethyl-1, 2-propanediimine on Low Carbon Steel (API 5L Grade B) in Acidic Solution [J]. Ind. Eng. Chem. Res., 2013, 52: 6617
32 Feng L, Zhang S T, Qiang Y J, et al. The synergistic corrosion inhibition study of different chain lengths ionic liquids as green inhibitors for X70 steel in acidic medium [J]. Mater. Chem. Phys., 2018, 215: 229
[1] 唐荣茂, 刘光明, 师超, 张帮彦, 田继红, 甘鸿禹, 刘永强. 十二烷基苯磺酸钠在模拟混凝土孔隙液中对Q235钢缓蚀及吸附行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[2] 王丽姿, 黄苗, 李向红. 核桃青皮提取物与碘化钾对钢在柠檬酸中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2021, 41(6): 819-827.
[3] 任莹, 赵会军, 周昊, 张建伟, 刘雯, 杨足膺, 王磊. 粒径和温度对20号钢冲刷腐蚀协同作用的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 508-516.
[4] 谭伯川, 张胜涛, 李文坡, 向斌, 强玉杰. 食用香料1,4-二硫-2,5-二醇环保型缓蚀剂对X70钢在0.5 mol/L H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 469-476.
[5] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[6] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[7] 陈文, 黄德兴, 韦奉. 铁蕨提取物对碳钢在盐酸中的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 376-382.
[8] 王丽姿, 李向红. 三氯乙酸溶液中咪唑啉在钢表面的吸附及缓蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(3): 353-361.
[9] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[10] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[11] 李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[12] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[13] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[14] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[15] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.