Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (4): 417-428    DOI: 10.11902/1005.4537.2020.101
  综合评述 本期目录 | 过刊浏览 |
核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展
焦洋, 张胜寒(), 檀玉
华北电力大学 (保定) 环境科学与工程系 保定 071003
Research Progress on Stress Corrosion Cracking of Stainless Steel for Nuclear Power Plant in High-temperature and High-pressure Water
JIAO Yang, ZHANG Shenghan(), TAN Yu
Department of Environment Science and Engineering, North China Electric Power University, Baoding 071003, China
全文: PDF(2782 KB)   HTML
摘要: 

综述了作为核电结构材料的不锈钢在高温高压水环境中的应力腐蚀开裂 (SCC) 行为,讨论了材料性能、加载方式、水化学环境等因素对应力腐蚀敏感性、裂纹萌生与扩展速率的影响,介绍了较成熟锌注入技术的发展历程及其对压水堆一次侧应力腐蚀 (PWSCC) 的影响作用。最后综合考虑各方面因素和实际运行情况,总结了降低SCC敏感性的方法,并提出未来研究中应重点关注的问题。

关键词 核电站不锈钢应力腐蚀开裂锌注入技术    
Abstract

Stress corrosion cracking behavior (SCC) of typical nuclear structural materials stainless steel in high-temperature and high-pressure water was reviewed. The effect of material type, mechanical properties, water chemistry on the sensitivity, initiation and propagation of cracks were discussed. The development of the zinc injection technology in the coolant system and its inhibitory effect on the primary side stress corrosion (PWSCC) were introduced. Finally, by taking various factors and actual operating conditions into consideration, the method of reducing the sensitivity of SCC was summarized, and the problems that should be focused on in future research were proposed.

Key wordsnuclear power plant    stainless steel    SCC    zing injection technology
收稿日期: 2020-06-12     
ZTFLH:  TG174  
通讯作者: 张胜寒     E-mail: shenghan_zhang@126.com
Corresponding author: ZHANG Shenghan     E-mail: shenghan_zhang@126.com
作者简介: 焦洋,女,1994年生,博士生

引用本文:

焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(4): 417-428.
Yang JIAO, Shenghan ZHANG, Yu TAN. Research Progress on Stress Corrosion Cracking of Stainless Steel for Nuclear Power Plant in High-temperature and High-pressure Water. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 417-428.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.101      或      https://www.jcscp.org/CN/Y2021/V41/I4/417

图1  屈服强度对不锈钢SCC扩展速率的影响[15,29]
图2  在高温含氧水中不锈钢的裂纹扩展速率随应力强度因子的变化[32,33]
图3  温度、热处理、表面状态对304不锈钢应力腐蚀开裂的影响[44]
图4  pH对304L、316L、法国Z6CND17.12奥氏体不锈钢SCC的影响[47-49]
ParameterAP1000Qinshan nuclear power Plant
Conductivity1~40 μS/cm (25 ℃)1~40 μS/cm (25 ℃)
pH4.2~10.5 (25 ℃)5.4~10.5 (25 ℃)
O20.1 mg/L0.1 mg/L
Cl-0.15 mg/L0.1 mg/L
F-0.15 mg/L---
H225~50 cm3 (STP)/kg H2O25~35 cm3 (STP)/kg H2O
Suspended solids0.2 mg/L1.0 mg/L
LiOH---0.22~2.2 mg/L
H3BO30~4000 mg/L (calculated as B)0~2400 mg/L (calculated as B)
表1  压水堆机组一回路冷却剂系统水质要求
1 Tang W. Analysis of fracture parameters on stress corrosion cracking of structural material in nuclear power plants under micro-scale [D]. Xi'an: Xi'an University of Science and Technology, 2012
1 唐伟. 微观尺度下核电结构材料应力腐蚀裂纹断裂参量分析 [D]. 西安: 西安科技大学, 2012
2 Sun H T, Ling L G, Lv Y H, et al. Stress corrosion problems and safety management of equipment materials for domestic pressurized water reactor nuclear power station [J]. Corros. Sci. Prot. Technol., 2016, 28: 283
2 孙海涛, 凌礼恭, 吕云鹤等. 国内压水堆核电站设备材料应力腐蚀问题及安全管理 [J]. 腐蚀科学与防护技术, 2016, 28: 283
3 Couvant T, Moulart P, Legras L, et al. PWSCC of austenitic stainless steels of heaters of pressurizers [A]. Proceedings of the 13th International Conference on Environment Degradation of Materials in Nuclear Power Systems Water Reactors [C]. British Columbia (Canada), 2007
4 Couvant T, Legras L, Vaillant F, et al. Effect of strain-hardening on stress corrosion cracking of AISI 304L stainless steel in PWR primary environment at 360 ℃ [A]. 12th International Conference on Environmental Degradation of Materials in Nuclear Power System [C]. Salt Lake City (US), 2005
5 Li B. The microstructure and stress corrosion cracking behavior study of nuclear plant 304 stainless steel welded joints [D]. Tianjin: Tianjin University, 2015
5 李博. 核电站用304不锈钢焊接接头组织和应力腐蚀行为研究 [D]. 天津: 天津大学, 2015
6 Ma C, Peng Q J, Han E-H, et al. Review of stress corrosion cracking of structural materials in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 37
6 马成, 彭群家, 韩恩厚等. 核电结构材料应力腐蚀开裂的研究现状与进展 [J]. 中国腐蚀与防护学报, 2014, 34: 37
7 Dang H Y, Zhang Y J, Luo X F, et al. Comparison and application of common stress corrosion standard test methods [J]. Phys. Test. Chem. Anal., 2018, 54A: 672
7 党恒耀, 张亚军, 罗先甫等. 常见应力腐蚀标准试验方法对比及应用 [J]. 理化检验 (物理分册), 2018, 54A: 672
8 Zhang Z, Wu X Q, Tan J B. Review of electrochemical noise technique for in situ monitoring of stress corrosion cracking [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 223
8 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展 [J]. 中国腐蚀与防护学报, 2020, 40: 223
9 Scenini F, Lindsay J, Chang L T, et al. Oxidation and SCC initiation studies of type 304L SS in PWR primary water [A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Oregon (USA), 2018: 793
10 Peyre P, Scherpereel X, Berthe L, et al. Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance [J]. Mater. Sci. Eng., 2000, A280: 294
11 Zhu C H, Lu Z M, Gao H G. Influence of shot peening pressure on stress corrosion susceptibility of 304 stainless steel [J]. Heat Treat. Met., 2011, 36(10): 42
11 朱成辉, 卢志明, 高红刚. 表面喷丸压力对304不锈钢应力腐蚀敏感性的影响 [J]. 金属热处理, 2011, 36(10): 42
12 Wu S H, Huang K F, Hu J L, et al. Study on the application of laser-peening technique for nuclear power equipment [J]. China Nucl. Power, 2011, 4: 207
12 吴树辉, 黄科峰, 胡金力等. 激光喷丸技术在核电设备上的应用 [J]. 中国核电, 2011, 4: 207
13 Milad M, Zreiba N, Elhalouani F, et al. The effect of cold work on structure and properties of AISI 304 stainless steel [J]. J. Mater. Process. Technol., 2008, 203: 80
14 Kuniya J, Masaoka I, Sasaki R. Effect of cold work on the stress corrosion cracking of nonsensitized AISI 304 stainless steel in high-temperature oxygenated water [J]. Corrosion, 1988, 44: 21
15 Arioka K, Yamada T, Terachi T, et al. Cold work and temperature dependence of stress corrosion crack growth of austenitic stainless steels in hydrogenated and oxygenated high-temperature water [J]. Corrosion, 2007, 63: 1114
16 Liu X L, Hwang W, Park J, et al. Toward the multiscale nature of stress corrosion cracking [J]. Nucl. Eng. Technol., 2018, 50: 1
17 Zhang L T. Research on stress corrosion crack growth behavior of nuclear grade 316 stainless steel in high temperature and high pressure water environment [D]. Beijing: University of Chinese Academy of Sciences, 2014
17 张利涛. 核级316不锈钢在高温高压水环境中的应力腐蚀裂纹扩展行为研究 [D]. 北京: 中国科学院大学, 2014
18 Arioka K, Yamada T, Terachi T, et al. Dependence of stress corrosion cracking for cold-worked stainless steel on temperature and potential, and role of diffusion of vacancies at crack tips [J]. Corrosion, 2008, 64: 691
19 Terachi T, Yamada T, Miyamoto T, et al. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water [J]. J. Nucl. Mater., 2012, 426: 59
20 Shoji T, Li G, Kwon J, et al. Quantification of yield strength effects on IGSCC of austenitic stainless steels in high temperature water [A]. Proceedings of the 11th International Conference on Environmental Degradation of Materials in Nuclear Power Systems [C]. Warrendale, PA, 2003: 834
21 Meng F J, Lu Z P, Shoji T, et al. Stress corrosion cracking of uni-directionally cold worked 316NG stainless steel in simulated PWR primary water with various dissolved hydrogen concentrations [J]. Corros. Sci., 2011, 53: 2558
22 Hong H U, Nam S W. The occurrence of grain boundary serration and its effect on the M23C6 carbide characteristics in an AISI 316 stainless steel [J]. Mater. Sci. Eng., 2002, A332: 255
23 Sahlaoui H, Makhlouf K, Sidhom H, et al. Effects of ageing conditions on the precipitates evolution, chromium depletion and intergranular corrosion susceptibility of AISI 316L: Experimental and modeling results [J]. Mater. Sci. Eng., 2004, A372: 98
24 Sun X Y, Liu X G, Wang L L, et al. Influence of solution annealing on intergranular corrosion resistance of 316L stainless steel [J]. Corros. Sci. Prot. Technol., 2014, 26: 228
24 孙小燕, 刘孝光, 汪列隆等. 固溶处理对316L不锈钢晶间腐蚀性能的影响 [J]. 腐蚀科学与防护技术, 2014, 26: 228
25 Li G F, Huang Z Y, Huang C B, et al. Electrochemical behavior and stress corrosion cracking behavior of stainless steel for internal components in high temperature and high pressure water environment [A]. Proceedings of the 2006 National Nuclear Materials Academic Exchange Conference [C]. Chengdu, 2006: 100
25 李光福, 黄中艺, 黄春波等. 堆内构件用不锈钢在高温高压水环境中的电化学行为与应力腐蚀破裂行为 [A]. 2006全国核材料学术交流会论文集 [C]. 成都, 2006: 100
26 Kamaya M. Influence of bulk damage on crack initiation in low-cycle fatigue of 316 stainless steel [J]. Fatigue Fract. Eng. Mater. Struct., 2010, 33: 94
27 Kamaya M, Haruna T. Crack initiation model for sensitized 304 stainless steel in high temperature water [J]. Corros. Sci., 2006, 48: 2442
28 Kamaya M. Environmental effect on fatigue strength of stainless steel in PWR primary water-role of crack growth acceleration in fatigue life reduction [J]. Int. J. Fatigue, 2013, 55: 102
29 Ru X, Staehle R W. Historical experience providing bases for predicting corrosion and stress corrosion in emerging supercritical water nuclear technology-part 2: Review [J]. Corrosion, 2013, 69: 319
30 Lu Z P, Shoji T, Meng F J, et al. Effects of water chemistry and loading conditions on stress corrosion cracking of cold-rolled 316NG stainless steel in high temperature water [J]. Corros. Sci., 2011, 53: 247
31 Gavrilov S, Vankeerberghen M, Nelissen G, et al. Finite element calculation of crack propagation in type 304 stainless steel in diluted sulphuric acid solutions [J]. Corros. Sci., 2007, 49: 980
32 Itow M, Kikuchi N, Tanka J, et al. SCC growth rates and reference curves for low carbon stainless steels in BWR environments [A]. Proceedings of the ASME/JSME 2004 Pressure Vessels and Piping Conference [C]. San Diego, California, USA, 2004: 167
33 Tsubota M, Katayama Y, Saito Y. Stress corrosion crack growth behavior of cold worked austenitic stainless steel in high temperature water [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Salt Lake City, UT, United States, 2005: 109
34 Andresen P L, Ford F P. Fundamental modeling of environmental cracking for improved design and lifetime evaluation in BWRs [J]. Int. J. Pressure Vessels Pip., 1994, 59: 61
35 Andresen P L, Ford F P. Life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel alloys in aqueous systems [J]. Mater. Sci. Eng., 1988, A103: 167
36 Han E-H, Wang J Q, Wu X Q, et al. Corrosion mechanisms of stainless steel and nickel base alloys in high temperature high pressure water [J]. Acta Metall. Sin., 2010, 46: 1379
36 韩恩厚, 王俭秋, 吴欣强等. 核电高温高压水中不锈钢和镍基合金的腐蚀机制 [J]. 金属学报, 2010, 46: 1379
37 Ford F P. Mechanisms of environmental cracking in systems peculiar to the power generation industry [R]. EPRI Contract RP1332-1, EPRI Report NP-2589, 1982
38 Ford F P, Povich M J. The effect of oxygen temperature combinations on the stress corrosion susceptibility of sensitized type 304 stainless steel in high purity water [J]. Corrosion, 1979, 35: 569
39 Agrawal A K, Welch G A, Begley J A, et al. Stress corrosion of sensitized and quench annealed type 304 stainless steels in high purity water [A]. Corrosion/78 [C]. Houston, 1978: 187
40 White E L, Berry W E. Influence of cyclic load and environmental effects on stress corrosion cracking of sensitized stainless steel. Final report [R]. 1981
41 Hale D A. The effect of BWR startup environments on crack growth in structural alloys [J]. J. Eng. Mater. Technol., 1986, 108: 44
42 Andresen P. L.Effects of Temperature on Crack Growth Rate in Sensitized Type304Stainless Steel and Alloy 600 [J]. Corrosion Science, 1993, 49(9): 714
43 Ruther W E, Soppet W K, Kassner T F. Effect of temperature and ionic impurities at very low concentrations on stress corrosion cracking of AISI 304 stainless steel [J]. Corrosion, 1988, 44: 791
44 Andresen P L. Crack initiation in CERT tests on type 304 stainless steel in pure water [J]. Corrosion, 1982, 38: 53
45 Li N. Influence of water chemistry on corrosion behavior of 304 stainless steel in high temperature-high pressure solution [D]. Tianjin: Tianjin University, 2012
45 李娜. 高温高压水介质对304不锈钢腐蚀性能的影响研究 [D]. 天津: 天津大学, 2012
46 Guan J X, Li Y, Dong C F, et al. Effect of temperature on stress corrosion cracking of 316L stainless steel in high-temperature water [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 1122
46 关矞心, 李岩, 董超芳等. 高温水环境下温度对316L不锈钢应力腐蚀开裂的影响 [J]. 北京科技大学学报, 2009, 31: 1122
47 Xu C L, Zhang L, Qian W J, et al. Influence factors of stress corrosion cracking in stainless steel for reactor internals [J]. China Metall., 2016, 26(6): 37
47 徐超亮, 张路, 钱王洁等. 堆内构件用不锈钢应力腐蚀开裂的影响因素 [J]. 中国冶金, 2016, 26(6): 37
48 Dong C F, Guan J X, Cheng X Q, et al. Effects of pH values on the stress corrosion cracking of 304L stainless steel in high-temperature and high-pressure water [J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 1569
48 董超芳, 关矞心, 程学群等. pH值对高温高压水中304L不锈钢应力腐蚀开裂的影响 [J]. 北京科技大学学报, 2010, 32: 1569
49 Guan J X. Study on stress corrosion cracking of stainless steel in acid and alkali solution under high temperature [J]. Total Corros. Control, 2016, 30(9): 63
49 关矞心. 316L不锈钢在高温酸碱溶液中的应力腐蚀行为 [J]. 全面腐蚀控制, 2016, 30(9): 63
50 Li H M, Yang W, Cai X, et al. Fractography of the stress corrosion cracking specimens of type 304 stainless steel in high temperature water containing boric acid and lithium ion [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 16
50 李红梅, 杨武, 蔡珣等. 304不锈钢在含硼和锂的高温水中的应力腐蚀破裂和断口分析 [J]. 中国腐蚀与防护学报, 2004, 24: 16
51 Li H M, Cai X, Lv Z P, et al. Analysis of surface oxide films on stress corrosion cracking specimens of type 304 stainless steel in high temperature water containing boric acid and lithium ion [J]. J. Mater. Eng., 2004, (4): 7
51 李红梅, 蔡珣, 吕战鹏等. 304不锈钢在含硼和锂的高温水中的应力腐蚀破裂和表层氧化膜分析 [J]. 材料工程, 2004, (4): 7
52 Ehrlich K, Konys J, Heikinheimo L. Materials for high performance light water reactors [J]. J. Nucl. Mater., 2004, 327: 140
53 Yang W, Zhao G Z, Zhang M J, et al. An AES investigation of the surface films formed on stress corrosion test specimens of type 304 stainless steel in high temperature water [J]. Corros. Sci., 1992, 33: 89
54 Congleton J, Zheng W, Hua H. Stress corrosion cracking of annealed type 316 stainless steel in high-temperature water [J]. Corrosion, 1990, 46: 621
55 Li G F, Congleton J. Stress corrosion cracking of a low alloy steel to stainless steel transition weld in PWR primary waters at 292°C [J]. Corros. Sci., 2000, 42: 1005
56 Du D H. Stress corrosion cracking study of 316 stainless steel in PWR primary water conditions [D]. Shanghai: Shanghai Jiaotong University, 2014
56 杜东海. 316不锈钢在压水堆一回路环境下的应力腐蚀性能研究 [D]. 上海: 上海交通大学, 2014
57 Peng Q J, Li G F, Shoji T. The crack tip solution chemistry in sensitized stainless steel in simulated boiling water reactor water studied using a microsampling technique [J]. J. Nucl. Sci. Technol., 2003, 40: 397
58 Vermilyea D A. A theory for the propagation of stress corrosion cracks in metals [J]. J. Electrochem. Soc., 1972, 119: 405
59 Turnbull A. Modelling of environment assisted cracking [J]. Corros. Sci., 1993, 34: 921
60 Ford F P. Quantitative prediction of environmentally assisted cracking [J]. Corrosion, 1996, 52: 375
61 Zhang K Q, Hu S L, Tang Z M, et al. Review on stress corrosion crack propagation behavior of cold worked nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 517
61 张克乾, 胡石林, 唐占梅等. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 517
62 MacDonald D D, Urquidi-MacDonald M. A coupled environment model for stress corrosion cracking in sensitized type 304 stainless steel in LWR environments [J]. Corros. Sci., 1991, 32: 51
63 MacDonald D D, Lu P C, Urquidi-MacDonald M D, et al. Theoretical estimation of crack growth rates in type 304 stainless steel in boiling-water reactor coolant environments [J]. Corrosion, 1996, 52: 768
64 Shi J B. Prediction of stress corrosion crack growth rate in nuclear power plant structural materials [D]. Tianjin: Tianjin University, 2014
64 石江波. 核电结构材料应力腐蚀开裂裂纹扩展速率预测 [D]. 天津: 天津大学, 2014
65 Wood C J, Marble W J, Prystupa M, et al. Experience with zinc injection passivation at BWR plants in the USA [J]. Water chemistry of nuclear reactor systems 5, 1989
66 Lister D H, Godin M S. The effect of dissolved zinc on the transport of corrosion products in PWRs [R]. Palo Alto, CA(USA): Electric Power Research Institute, 1990
67 Jiang S Q. The effects of zinc injection of corrosion behaviors of PWR primary loop structural materials [D]. Shanghai: Shanghai Jiaotong University, 2011
67 姜苏青. 注锌对压水堆核电站一回路结构材料腐蚀行为影响的研究 [D]. 上海: 上海交通大学, 2011
68 Jiang L. Research and application of zinc injection in PWRs [A]. Progress Report on China Nuclear Science & Technology (Vol. 2) [C]. Guiyang, 2011: 74
68 姜磊. 压水堆核电站加锌技术的研究与应用 [A]. 中国核科学技术进展报告 (第二卷) [C]. 贵阳, 2011: 74
69 Pathania R, Yagnik S, Gold R E, et al. Evaluation of zinc addition to PWR primary coolant [A]. NACE International [C]. Houston, TX (United States), 1995
70 Gold R E, Kormuth J W, Bergmann C A, et al. Evaluation of zinc addition to primary coolant of Farley-2 PWRs [R]. Palo Alto, CA: EPRI, 1996
71 Huang Y, Wu W S, Cong S, et al. Stress corrosion behaviors of 316LN stainless steel in a simulated PWR primary water environment [J]. Materials, 2018, 11: 1509
72 Zhang L F, Chen K, Wang J M, et al. Effects of zinc injection on stress corrosion cracking of cold worked austenitic stainless steel in high-temperature water environments [J]. Scr. Mater., 2017, 140: 50
73 Du D H, Chen K, Zhang L F, et al. Effect of zinc on stress corrosion crack growth rate of type 316 stainless steel [J]. Nucl. Power Eng., 2017, 38(2): 82
73 杜东海, 陈凯, 张乐福等. 注锌对316不锈钢应力腐蚀裂纹扩展速率的影响 [J]. 核动力工程, 2017, 38(2): 82
74 Liu X H. Study on corrosion behavior of nuclear grade stainless steel in high temperature and pressure water with zinc [D]. Shenyang, Institute of Metal Research, Chinese Academy of Sciences, 2014
74 刘侠和. 高温高压加锌水化学环境下核级不锈钢的腐蚀行为研究 [D]. 沈阳, 中国科学院金属研究所, 2014
75 Qiao P P, Zhang L F, Liu R Q, et al. Zinc addition effects on general corrosion of austenitic stainless steels in PWR primary conditions [J]. Atom. Energy Sci. Technol., 2010, 44: 690
75 乔培鹏, 张乐福, 刘瑞芹等. 压水堆条件下锌对奥氏体不锈钢腐蚀性能的影响 [J]. 原子能科学技术, 2010, 44: 690
76 Liu X H, Wu X Q, Han E-H. Effect of Zn injection on established surface oxide films on 316L stainless steel in borated and lithiated high temperature water [J]. Corros. Sci., 2012, 65: 136
77 Marks C, Dumouchel M, Reid R, et al. Quantifying the benefit of chemical mitigation of PWSCC via zinc addition or hydrogen optimization [A]. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors [C]. Colorado, 2011: 1893
78 Norring K, Engström J. Initiation of SCC in nickel base alloys in primary PWR environment: studies at Studsvik since mid 1980s [J]. Energy Mater., 2008, 3: 113
79 Angeliu T M, Andresen P L. Effect of zinc additions on oxide rupture strain and repassivation kinetics of iron-based alloys in 288 ℃ water [J]. Corrosion, 1996, 52: 28
80 Lin C C. A review of corrosion product transport and radiation field buildup in boiling water reactors [J]. Prog. Nucl. Energy, 2009, 51: 207
81 Lister D H. Mechanisms of zinc interaction with oxide films in high-temperature water [A]. Presentation at EPRI Meeting [C]. Toronto, Ontario, Canada, 2004
82 Tian F L, Ma X L. Analysis the application of zinc injection in nuclear power plant [J]. Shanxi Chem. Ind., 2016, 36(2): 70
82 田风龙, 马秀玲. 浅析加锌技术在核电厂的应用 [J]. 山西化工, 2016, 36(2): 70
[1] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[2] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[3] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[4] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[5] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[6] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[9] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[10] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[11] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[12] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[13] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[14] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[15] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.