Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (3): 376-382    DOI: 10.11902/1005.4537.2020.058
  研究报告 本期目录 | 过刊浏览 |
铁蕨提取物对碳钢在盐酸中的缓蚀行为研究
陈文1(), 黄德兴1, 韦奉2
1.楚雄师范学院化学与生命科学学院 楚雄 675000
2.国家石油天然气管材工程技术研究中心 宝鸡 721008
Inhibition Effect of Brainea Insignis Extract Against Carbon Steel Corrosion in HCl Solution
CHEN Wen1(), HUANG Dexing1, WEI Feng2
1.Department of Chemistry and Life Science, Chuxiong Normal University, Chuxiong 675000, China
2.Chinese National Engineering Research Center for Petroleum and Natural Gas Tubular Goods, Baoji 721008, China
全文: PDF(3518 KB)   HTML
摘要: 

利用失重法、极化曲线和电化学阻抗谱等方法研究了苏铁蕨提取物 (BIE) 对Q235钢在1 mol·L-1 HCl溶液中的腐蚀抑制性能。结果表明:BIE可明显减缓碳钢在盐酸溶液中的腐蚀,当BIE浓度增大到560 mg·L-1时,钢片的腐蚀失重速率降至1.125 g·m-2·h-1,缓蚀率达到94.3%。由电化学分析可知,BIE以抑制碳钢阴极腐蚀反应为主;随BIE浓度的增大,金属表面电荷转移过程变得困难,缓蚀性能增强。由极化曲线和电化学阻抗谱拟合计算的最高缓蚀率分别为95.8%和95.3%,与失重法结果吻合。BIE中的缓蚀剂分子在碳钢表面的吸附满足Langmuir、Temkin吸附等温线和EI-Awady热力学-动力学模型,属于非均质性吸附且吸附的有机分子之间应存在相互作用力。光谱分析和表面形貌观察分别证实了BIE分子的吸附和缓蚀作用。

关键词 Q235钢盐酸植物提取液吸附缓蚀    
Abstract

The inhibition effect of brainea insignis extract (BIE) on the corrosion of Q235 steel in HCl solution was investigated by means of mass loss measurement, polarization curve measurement and electrochemical impedance spectroscopy. The results showed that BIE could effectively inhibit the carbon steel corrosion in HCl solution, as the BIE concentration was up to 560 mg·L-1, the corrosion rate of Q235 steel decreased to 1.125 g·m-2·h-1, namely the corrosion inhibition efficiency reached 94.3%. Electrochemical analysis shows that the BIE extract suppressed mainly the cathodic corrosion reaction. With the increasing concentration of BIE extract, the charge transfer process on the metal surface was hindered increasingly, resulting in enhanced corrosion inhibition performance. The highest corrosion inhibition efficiencies calculated from the fitting of polarization curves and electrochemical impedance spectroscopy were 95.8% and 95.3%, respectively, which were in agreement with the result of mass loss measurement. The adsorption action of BIE molecules on the steel surface followed Langmuir, Temkin adsorption isotherms and the EI-Awady thermodynamic-kinetic model, and belonged to heterogeneous adsorption, whilst there should exist lateral interaction forces between the adsorbed organic molecules. Spectral analysis and surface morphology observations confirmed the existance of the adsorption action and corrosion inhibition of the extract molecules, respectively.

Key wordsQ235 steel    HCl    plant extractive    adsorption    corrosion inhibition
收稿日期: 2020-04-04     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51361001)
通讯作者: 陈文     E-mail: chenw@cxtc.edu.cn
Corresponding author: CHEN Wen     E-mail: chenw@cxtc.edu.cn

引用本文:

陈文, 黄德兴, 韦奉. 铁蕨提取物对碳钢在盐酸中的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 376-382.
Wen CHEN, Dexing HUANG, Feng WEI. Inhibition Effect of Brainea Insignis Extract Against Carbon Steel Corrosion in HCl Solution. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 376-382.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.058      或      https://www.jcscp.org/CN/Y2021/V41/I3/376

表1  植物化学方法检测苏铁蕨提取物的主要成分
图1  BIE及其在钢片表面吸附膜的红外谱图
图2  Q235钢表面BIE吸附膜层的XPS谱
图3  Q235钢在含不同浓度BIE的1 mol·L-1盐酸中的腐蚀速率 (vcorr) 及缓蚀率 (IEwL)
图4  Q235钢在含不同浓度BIE的1 mol·L-1盐酸中的极化曲线
CBIE / mg·L-1-Ecorr / mVVS SCEba / mV·dec-1bc / mV·dec-1Icorr / μA·cm-2IEPC / %
Blank4721061372209---
354668113583162.4
704667812954375.4
1404727411639582.1
2804836212213394.0
560471601139295.8
表2  Q235钢在含不同浓度BIE的 1 mol·L-1盐酸中的极化曲线参数
图5  Q235钢在含不同浓度BIE的1 mol·L-1盐酸中的Nyquist图
图6  拟合电化学图谱的等效电路图
CBIE / mg·L-1Rs / Ω·cm2Rct / Ω·cm2CPEdlCdl / μF·cm-2IEEIS / %
Y0×106 / Ω-1·cm-2·snn
Blank1.839.64740.846178---
351.9036.33060.84313273.4
701.9952.82940.81111281.7
1401.9187.12100.8439988.9
2801.87138.41050.8846193.0
5602.50209.3690.8894195.3
表3  Q235钢在不同浓度BIE的1 mol·L-1盐酸中的阻抗图谱拟合参数
图7  Langmuir,Temkin吸附等温线和依据El-Awady热力学-动力学模型拟合结果
图8  Q235钢试片在1 mol·L-1 HCl溶液中浸泡6 h后的SEM和CLSM图像
1 Zheng J, Wang Y N, Zhang B L, et al. Research progress on natural products as corrosion inhibitor in acid, neutral and alkaline mediums [J]. Corros. Sci. Prot. Technol., 2011, 23: 103
1 郑杰, 王亚娜, 章柏林等. 酸性、中性、碱性介质中植物型缓蚀剂的研究进展 [J]. 腐蚀科学与防护技术, 2011, 23: 103
2 Wang X, Ren S F, Zhang D X, et al. Inhibition effect of soybean meal extract on corrosion of Q235 steel in hydrochloric acid medium [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 267
2 王霞, 任帅飞, 张代雄等. 豆粕提取物在盐酸中对Q235钢的缓蚀性能 [J]. 中国腐蚀与防护学报, 2019, 39: 267
3 Alvarez P E, Fiori-Bimbi M V, Neske A, et al. Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution [J]. J. Ind. Eng. Chem., 2018, 58: 92
4 Qiang Y J, Zhang S T, Tan B C, et al. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution [J]. Corros. Sci., 2018, 133: 6
5 Verma C, Ebenso E E, Bahadur I, et al. An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media [J]. J. Mol. Liq., 2018, 266: 577
6 Casaletto M P, Figà V, Privitera A, et al. Inhibition of Cor-Ten steel corrosion by “green” extracts of Brassica campestris [J]. Corros. Sci., 2018, 136: 91
7 Fang Y S, Yang Y B, Yang M H, et al. Chemical constituents from the fern Brainea insignis (Blechnaceae) [J]. Acta Bot. Yunnanica, 2008, 30: 725
7 方云山, 杨亚滨, 杨明惠等. 苏铁蕨的化学成分 [J]. 云南植物研究, 2008, 30: 725
8 Wu P, Xie H H, Tao W Q, et al. Phytoecdysteroids from the rhizomes of Brainea insignis [J]. Phytochemistry, 2010, 71: 975
9 Fan Y M, Tao W Q, Gao S Z, et al. Purification and analysis of the Brainia insignis (Hook.) J. Sm. polysaccharides [J]. J. Guangzhou Univ. (Nat. Sci. Ed.), 2008, 7(6): 46
9 樊亚鸣, 陶文琴, 高绍中等. 苏铁蕨多糖的提取及其组分分析 [J]. 广州大学学报 (自然科学版), 2008, 7(6): 46
10 Liu Y C. Chemical composition and antioxidant activity of fern Brainea insignis [J]. Yunnan Agric., 2016, (12): 46
10 刘艳春. 苏铁蕨的化学成分与抗氧化活性研究 [J]. 云南农业, 2016, (12): 46
11 Morales-Gil P, Walczak M S, Cottis R A, et al. Corrosion inhibitor binding in an acidic medium: Interaction of 2-mercaptobenizmidazole with carbon-steel in hydrochloric acid [J]. Corros. Sci., 2014, 85: 109
12 Frateur I, Lartundo-Rojas L, Méthivier C, et al. Influence of bovine serum albumin in sulphuric acid aqueous solution on the corrosion and the passivation of an iron-chromium alloy [J]. Electrochim. Acta, 2006, 51: 1550
13 Chauhan L R, Gunasekaran G. Corrosion inhibition of mild steel by plant extract in dilute HCl medium [J]. Corros. Sci., 2007, 49: 1143
14 Asami K, Hashimoto K, Shimodaira S. X-ray photoelectron spectrum of Fe2+ state in iron oxides [J]. Corros. Sci., 1976, 16: 35
15 Shimura T, Aramaki K. Additional modification to two-dimensional polymer films of a hydroxymethylbenzene self-assembled monolayer with alkyltriethoxysilanes for enhancing the protective abilities against iron corrosion [J]. Corros. Sci., 2008, 50: 596
16 Liu B Y, Xi H X, Li Z, et al. Adsorption and corrosion-inhibiting effect of 2-(2-{[2-(4-Pyridylcarbonyl) hydrazono]methyl}phenoxy) acetic acid on mild steel surface in seawater [J]. Appl. Surf. Sci., 2012, 258: 6679
17 Liu X H, Han J, Sun C Y, et al. Mechanism of tungstate compound inhibitor in sea water with XPS and EDS [J]. Surf. Technol., 2011, 40(3): 52
17 柳鑫华, 韩婕, 孙彩云等. 用XPS及EDS能谱研究钨酸盐复合缓蚀剂在天然海水中的缓蚀机理 [J]. 表面技术, 2011, 40(3): 52
18 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008
18 曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008
19 Abd El-Lateef H M. Experimental and computational investigation on the corrosion inhibition characteristics of mild steel by some novel synthesized imines in hydrochloric acid solutions [J]. Corros. Sci., 2015, 92: 104
20 Popova A, Raicheva S, Sokolova E, et al. Frequency dispersion of the interfacial impedance at mild steel corrosion in acid media in the presence of benzimidazole derivatives [J]. Langmuir, 1996, 12: 2083
21 Ateya B G, El-Anadouli B E, El-Nizamy F M. The adsorption of thiourea on mild steel [J]. Corros. Sci., 1984, 24: 509
22 Rahal H T, Abdel-Gaber A M, Younes G O. Inhibition of steel corrosion in nitric acid by sulfur containing compounds [J]. Chem. Eng. Commun., 2016, 203: 435
23 Şahın M, Bılgıç S. The effect of crotyl alcohol on the corrosion of austenitic chromium-nickel steel [J]. Appl. Surf. Sci., 1999, 147: 27
24 Umoren S A, Ebenso E E. The synergistic effect of polyacrylamide and iodide ions on the corrosion inhibition of mild steel in H2SO4 [J]. Mater. Chem. Phys., 2007, 106: 387
[1] 王丽姿, 李向红. 三氯乙酸溶液中咪唑啉在钢表面的吸附及缓蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(3): 353-361.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[4] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[5] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[6] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[8] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[9] 李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[10] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[11] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[12] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[13] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[14] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[15] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.