|
|
非晶合金耐蚀性研究进展 |
王东亮, 丁华平, 马云飞, 龚攀( ), 王新云 |
华中科技大学材料科学与工程学院 材料成形与模具技术国家重点实验室 武汉 430074 |
|
Research Progress on Corrosion Resistance of Metallic Glasses |
WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan( ), WANG Xinyun |
State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
引用本文:
王东亮, 丁华平, 马云飞, 龚攀, 王新云. 非晶合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
Dongliang WANG,
Huaping DING,
Yunfei MA,
Pan GONG,
Xinyun WANG.
Research Progress on Corrosion Resistance of Metallic Glasses. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 277-288.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2020.089
或
https://www.jcscp.org/CN/Y2021/V41/I3/277
|
1 |
Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
|
2 |
Brenner A, Couch D E, Williams E K. Electrodeposition of alloys of phosphorus with nickel or cobalt [J]. J. Res. Nat. Bureau Stand., 1950, 44: 109
|
3 |
Greer A L, Sun Y H. Stored energy in metallic glasses due to strains within the elastic limit [J]. Philos. Mag., 2016, 96: 1643
|
4 |
Gan Z, Zhang C, Zhang Z, et al. Crystallization-dependent transition of corrosion resistance of an Fe-based bulk metallic glass under hydrostatic pressures[J]. Corros. Sci., 2021, 179: 109098
|
5 |
Han C, Wei Y H, Zhang H F, et al. Corrosion resistance and electrochemical behaviour of amorphous Ni84.9Cr7.4Si4.2Fe3.5 alloy in alkaline and acidic solutions [J]. Acta Metall. Sin.(Engl. Lett.), 2019, 32: 1421
|
6 |
Mao L, Zhu H W, Chen L, et al. Enhancement of corrosion resistance and biocompatibility of Mg-Nd-Zn-Zr alloy achieved with phosphate coating for vascular stent application [J]. J. Mater. Res. Technol., 2020, 9: 6409
|
7 |
Si C R, Duan B B, Zhang Q, et al. Microstructure, corrosion-resistance, and wear-resistance properties of subsonic flame sprayed amorphous Fe-Mo-Cr-Co coating with extremely high amorphous rate [J]. J. Mater. Res. Technol., 2020, 9: 3292
|
8 |
Zhang L C, Jia Z, Lyu F C, et al. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects [J]. Prog. Mater. Sci, 2019, 105: 100576
|
9 |
Ding S B, Xiang T F, Li C, et al. Fabrication of self-cleaning super-hydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel [J]. Mater. Des., 2017, 117: 280
|
10 |
Zhou Q Y, Sheikh S, Ou P, et al. Corrosion behavior of Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy in aqueous chloride solutions [J]. Electrochem. Commun., 2019, 98: 63
|
11 |
Jamali S S, Moulton S E, Tallman D E, et al. Self-healing characteristic of praseodymium conversion coating on AZNd Mg alloy studied by scanning electrochemical microscopy [J]. Electrochem. Commun., 2017, 76: 6
|
12 |
Tian W M, Du N, Li S M, et al. Metastable pitting corrosion of 304 stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2014, 85: 372
|
13 |
Laleh M, Hughes A E, Xu W, et al. On the unusual intergranular corrosion resistance of 316L stainless steel additively manufactured by selective laser melting [J]. Corros. Sci., 2019, 161: 108189
|
14 |
Coimbrão D D, Zepon G, Koga G Y, et al. Corrosion properties of amorphous, partially, and fully crystallized Fe68Cr8Mo4Nb4B16 alloy [J]. J. Alloy. Compd., 2020, 826: 154123
|
15 |
Tan C G, Jiang W J, Wu X Q, et al. Effect of crystallization on corrosion resistance of Cu52.5Ti30Zrll.5Ni6 bulk amorphous alloy [J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 751
|
16 |
Wu X Q, Xie C Q. Influence of crystallization on corrosion resistance of Al86Ni6La6Cu2 amorphous alloy [J]. J. Rare Earths, 2008, 26: 745
|
17 |
Bi F Q, Zhou B, Wang Y. Effect of alloying on Anti-corrosion performance of stainless steel: A review [J]. Mater. Rev., 2019, 33: 1206
|
17 |
毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展 [J]. 材料导报, 2019, 33: 1206
|
18 |
Borgioli F, Galvanetto E, Bacci T. Corrosion behaviour of low temperature nitrided nickel-free, AISI 200 and AISI 300 series austenitic stainless steels in NaCl solution [J]. Corros. Sci., 2018, 136: 352
|
19 |
Xu J, Niu J Z, Zhang Z T, et al. Effects of B addition on glass formation, mechanical properties and corrosion resistance of the Zr66.7-xNi33.3Bx(x=0, 1, 3, and 5 at.%) metallic glasses [J]. JOM, 2016, 68: 682
|
20 |
Huang L, Qiao D, Green B A, et al. Bio-corrosion study on zirconium-based bulk-metallic glasses [J]. Intermetallics. 2009, 17(4): 195
|
21 |
Pang S J, Zhang T, Asami K, et al. Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance [J]. Acta Mater., 2002, 50: 489
|
22 |
Wang S L, Yi S. The corrosion behaviors of Fe-based bulk metallic glasses in a sulfuric solution at 70 ℃ [J]. Intermetallics, 2010, 18: 1950
|
23 |
Chattoraj I, Baunack S, Stoica M, et al. Electrochemical response of Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk amorphous alloy in different aqueous media [J]. Mater. Corros., 2004, 55: 36
|
24 |
Wang J L, Wan Y, Ma Z J, et al. Glass-forming ability and corrosion performance of Mn-doped Mg-Zn-Ca amorphous alloys for biomedical applications [J]. Rare Met., 2018, 37: 579
|
25 |
Zhou J, Li K, Wang B, et al. Impact of Nd addition on glass formation ability and corrosion resistance of Mg-Zn-Ca alloys [J]. Mater. Rev., 2019, 33: 73
|
25 |
周杰, 李克, 王彪等. 添加Nd对Mg-Zn-Ca合金非晶形成能力和耐蚀性的影响 [J]. 材料导报, 2019, 33: 73
|
26 |
Nie X P, Yang X H, Jiang J Z. Ti microalloying effect on corrosion resistance and thermal stability of CuZr-based bulk metallic glasses [J]. J. Alloy. Compd., 2009, 481: 498
|
27 |
Long Z L, Chang C T, Ding Y H, et al. Corrosion behavior of Fe-based ferromagnetic (Fe, Ni)-B-Si-Nb bulk glassy alloys in aqueous electrolytes [J]. J. Noncrystall. Solids, 2008, 354: 4609
|
28 |
Zhou W, Weng W P, Hou J X. Glass-forming ability and corrosion resistance of Zr-Cu-Al-Co bulk metallic glass [J]. J. Mater. Sci. Technol., 2016, 32: 349
|
29 |
Zhang C, Li N, Pan J, et al. Enhancement of glass-forming ability and bio-corrosion resistance of Zr-Co-Al bulk metallic glasses by the addition of Ag [J]. J. Alloy. Compd., 2010, 504 (): S163
|
30 |
Yu L S, Tang J L, Wang H, et al. Corrosion behavior of bulk (Zr58Nb3Cu16Ni13Al10)100-xYx(x=0, 0.5, 2.5 at.%) metallic glasses in sulfuric acid [J]. Corros. Sci., 2019, 150: 42
|
31 |
Jin Z S, Yang Y J, Zhang Z P, et al. Effect of Hf substitution Cu on glass-forming ability, mechanical properties and corrosion resistance of Ni-free Zr-Ti-Cu-Al bulk metallic glasses [J]. J. Alloy. Compd., 2019, 806: 668
|
32 |
Xu T, Pang S J, Li H F, et al. Corrosion resistant Cr-based bulk metallic glasses with high strength and hardness [J]. J. Non-Crystall. Solids, 2015, 410: 20
|
33 |
Li H F, Pang S J, Liu Y, et al. Biodegradable Mg-Zn-Ca-Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications [J]. Mater. Des., 2015, 67: 9
|
34 |
Cao Q P, Peng S, Zhao X N, et al. Effect of Nb substitution for Cu on glass formation and corrosion behavior of Zr-Cu-Ag-Al-Be bulk metallic glass [J]. J. Alloy. Compd., 2016, 683: 22
|
35 |
Xu T, Pang S J, Zhang T. Glass formation, corrosion behavior, and mechanical properties of novel Cr-rich Cr-Fe-Mo-C-B-Y bulk metallic glasses [J]. J. Alloy. Compd., 2015, 625: 318
|
36 |
Xu D D, Zhou B L, Wang Q Q, et al. Effects of Cr addition on thermal stability, soft magnetic properties and corrosion resistance of FeSiB amorphous alloys [J]. Corros. Sci., 2018, 138: 20
|
37 |
Dan Z H, Takenaka K, Zhang Y, et al. Effect of Si addition on the corrosion properties of amorphous Fe-based soft magnetic alloys [J]. J. Non-Crystall. Solids, 2014, 402: 36
|
38 |
Li X, Zhao X, Liu F, et al. Effect of C addition on the corrosion properties of amorphous Fe-based amorphous alloys [J]. Int. J. Mod. Phys., 2019, 33B: 1940006
|
39 |
Zhang L M, Zhang S D, Ma A L, et al. Influence of cerium content on the corrosion behavior of Al-Co-Ce amorphous alloys in 0.6 M NaCl solution [J]. J. Mater. Sci. Technol., 2019, 35: 1378
|
40 |
Babilas R, Bajorek A, Włodarczyk P, et al. Effect of Au addition on the corrosion activity of Ca-Mg-Zn bulk metallic glasses in Ringer's solution [J]. Mater. Chem. Phys., 2019, 226: 51
|
41 |
Zhou M, Hagos K, Huang H Z, et al. Improved mechanical properties and pitting corrosion resistance of Zr65Cu17.5Fe10Al7.5 bulk metallic glass by isothermal annealing [J]. J. Non-Crystall. Solids, 2016, 452: 50
|
42 |
González S, Pellicer E, Suriñach S, et al. Mechanical and corrosion behaviour of as-cast and annealed Zr60Cu20Al10Fe5Ti5 bulk metallic glass [J]. Intermetallics, 2012, 28: 149
|
43 |
Liu X J, Bu W D, Liu R G. Effects of heat treatment temperature on corrosion resistance of amorphous alloys [J]. J. Netshape Form. Eng., 2018, 10(6): 34
|
43 |
刘小江, 卜文德, 刘容光. 热处理温度对非晶合金耐蚀性能的影响 [J]. 精密成形工程, 2018, 10(6): 34
|
44 |
Poddar C, Ningshen S, Jayaraj J. Corrosion assessment of Ni60Nb30Ta10 metallic glass and its partially crystallized alloy in concentrated nitric acid environment [J]. J. Alloy. Compd., 2020, 813: 152172
|
45 |
Hua N B, Liao Z L, Wang Q T, et al. Effects of crystallization on mechanical behavior and corrosion performance of a ductile Zr68Al8Ni8Cu16 bulk metallic glass [J]. J. Non-Crystall. Solids, 2020, 529: 119782
|
46 |
Lin J G, Xu J, Wang W W, et al. Electrochemical behavior of partially crystallized amorphous Al86Ni9La5 alloys [J]. Mater. Sci. Eng., 2011, B176: 49
|
47 |
Gu Y D, Zheng Z, Niu S Z, et al. The seawater corrosion resistance and mechanical properties of Cu47.5Zr47.5Al5 bulk metallic glass and its composites [J]. J. Non-Crystall. Solids, 2013, 380: 135
|
48 |
Debnath M R, Kim D H, Fleury E. Dependency of the corrosion properties of in-situ Ti-based BMG matrix composites with the volume fraction of crystalline phase [J]. Intermetallics, 2012, 22: 255
|
49 |
Ríos C T, De Souza J S, Antunes R A. Preparation and characterization of the structure and corrosion behavior of wedge mold cast Fe43.2Co28.8B19.2Si4.8Nb4 bulk amorphous alloy [J]. J. Alloy. Compd., 2016, 682: 412
|
50 |
Fan H B, Zheng W, Wang G Y, et al. Corrosion behavior of Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass in sulfuric acid solutions [J]. Metall. Mater. Trans., 2011, 42A: 1524
|
51 |
Li G, Huang L, Dong Y, et al. Corrosion behavior of bulk metallic glasses in different aqueous solutions [J]. Sci. China Phys. Mech. Astron., 2010, 53: 435
|
52 |
Shin S, Kim T S, Kang S K. The influence of spark plasma sintering temperature on the mechanical properties and corrosion resistance of Zr65Al10Ni10Cu15 metallic glass powder [J]. Intermetallics, 2010, 18: 2005
|
53 |
Ma X, Zhen N, Guo J J, et al. Preparation of Ni-based bulk metallic glasses with high corrosion resistance [J]. J. Non-Crystall. Solids, 2016, 443: 91
|
54 |
Uhlenhaut D I, Furrer A, Uggowitzer P J, et al. Corrosion properties of glassy Mg70Al15Ga15 in 0.1 M NaCl solution [J]. Intermetallics, 2009, 17: 811
|
55 |
Liu Y, Wang W M, Zhang H D, et al. Effect of compression on the crystallization behavior and corrosion resistance of Al86Ni9La5 amorphous alloy [J]. J. Mater. Sci. Technol., 2012, 28: 1102
|
56 |
Padhy N, Ningshen S, Mudali U K. Electrochemical and surface investigation of zirconium based metallic glass Zr59Ti3Cu20Al10Ni8 alloy in nitric acid and sodium chloride media [J]. J. Alloy. Compd., 2010, 503: 50
|
57 |
Ge W J, Li B Y, Axinte E, et al. Crystallization and corrosion resistance in different aqueous solutions of Zr50.7Ni28Cu9Al12.3 amorphous alloy and its crystallization counterparts [J]. JOM, 2017, 69: 776
|
58 |
Liu S S, Xia C Q, Yang T, et al. High strength and superior corrosion resistance of the Ti-Ni-Cu-Zr crystal/glassy alloys with superelasticity [J]. Mater. Lett., 2019, 260: 126938
|
59 |
Gu J L, Shao Y, Shi L X, et al. Novel corrosion behaviours of the annealing and cryogenic thermal cycling treated Ti-based metallic glasses [J]. Intermetallics, 2019, 110: 106467
|
60 |
Hua N B, Huang Y X, Zheng Z Q, et al. Tribological and corrosion behaviors of Mg56.5Cu27Ag5Dy11.5 bulk metallic glass in NaCl solution [J]. J. Non-Crystall. Solids, 2017, 459: 36
|
61 |
Wang Y B, Li H F, Zheng Y F, et al. Correlation between corrosion performance and surface wettability in ZrTiCuNiBe bulk metallic glasses [J]. Appl. Phys. Lett., 2010, 96: 251909
|
62 |
Ma J, Zhang X Y, Wang D P, et al. Superhydrophobic metallic glass surface with superior mechanical stability and corrosion resistance [J]. Appl. Phys. Lett., 2014, 104: 173701
|
63 |
Gu J L, Shao Y, Bu H T, et al. An abnormal correlation between electron work function and corrosion resistance in Ti-Zr-Be-(Ni/Fe) metallic glasses [J]. Corros. Sci., 2020, 165: 108392
|
64 |
Li H F, Liu Y, Pang S J, et al. Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment [J]. Intermetallics, 2016, 73: 31
|
65 |
Gostin P F, Eigel D, Grell D, et al. Stress corrosion cracking of a Zr-based bulk metallic glass [J]. Mater. Sci. Eng., 2015, A639: 681
|
66 |
An W K, Cai A H, Xiong X, et al. Effect of tension on corrosive and thermal properties of Cu60Zr30Ti10 metallic glass [J]. J. Alloy. Compd., 2013, 563: 55
|
67 |
Shang S Z, Kong M L, Li Y. Corrsion Behavior of Zr53.5Cu26.5Ni5Al12Ag3 bulk metallic glass in NaOH [J]. J. Shenyang Univ. Chem. Technol., 2012, 26: 199
|
67 |
尚世智, 孔美玲, 李云. 锆基非晶合金在NaOH溶液中的腐蚀行为 [J]. 沈阳化工大学学报, 2012, 26: 199
|
68 |
Bi F Q, Yang S, Liang Z, et al. Study on high temperature and high pressure corrosion behavior of iron-based amorphous coatings in CO2 Cl- coexisting medium [J]. Chem. Eng. Mach., 2018, 45(2): 157
|
68 |
毕凤琴, 杨烁, 梁柱等. 铁基非晶涂层在CO2/Cl-共存介质中的高温高压腐蚀行为研究 [J]. 化工机械, 2018, 45(2): 157
|
69 |
Si J J, Chen X H, Cai Y H, et al. Corrosion behavior of Cr-based bulk metallic glasses in hydrochloric acid solutions [J]. Corros. Sci., 2016, 107: 123
|
70 |
Li G H, Wang W M, Ma H J, et al. Effect of different annealing atmospheres on crystallization and corrosion resistance of Al86Ni9La5 amorphous alloy [J]. Mater. Chem. Phys., 2011, 125: 136
|
71 |
Gebert A, Concustell A, Greer A L, et al. Effect of shot-peening on the corrosion resistance of a Zr-based bulk metallic glass [J]. Scripta Mater., 2010, 62: 635
|
72 |
Liu C, Zhou Z F, Li K Y. Improved corrosion resistance of CoCrMo alloy with self-passivation ability facilitated by carbon ion implantation [J]. Electrochim. Acta, 2017, 241: 331
|
73 |
Sharma P, Dhawan A, Sharma S K. Influence of nitrogen ion implantation on corrosion behavior of Zr55Cu30Ni5Al10 amorphous alloy [J]. J. Non-Crystall. Solids, 2019, 511: 186
|
74 |
Chen S S, Tu J X, Hu Q, et al. Corrosion resistance and in vitro bioactivity of Si-containing coating prepared on a biodegradable Mg-Zn-Ca bulk metallic glass by micro-arc oxidation [J]. J. Non-Crystall. Solids, 2017, 456: 125
|
75 |
Tailleart N R, Huang R, Aburada T, et al. Effect of thermally induced relaxation on passivity and corrosion of an amorphous Al-Co-Ce alloy [J]. Corros. Sci., 2012, 59: 238
|
76 |
Liu J T, Hou J X, Zhang X R, et al. Influence of remelting treatment on corrosion behavior of amorphous alloys [J]. Rare Met. Mater. Eng., 2017, 46: 296
|
77 |
Shi H Q, Tang C C, Zhao X Y, et al. Effect of isothermal annealing on mechanical performance and corrosion resistance of Ni-free Zr59Ti6Cu17.5Fe10Al7.5 bulk metallic glass [J]. J. Non-Crystall. Solids, 2020, 537: 120013
|
78 |
Yang Y J, Zhang Z P, Jin Z S, et al. A study on the corrosion behavior of the in-situ Ti-based bulk metallic glass matrix composites in acid solutions [J]. J. Alloy. Compd., 2018, 782: 927
|
79 |
Li J W, Yang L J, Ma H R, et al. Improved corrosion resistance of novel Fe-based amorphous alloys [J]. Mater. Des., 2016, 95: 225
|
80 |
Yang Y J, Jin Z S, Ma X Z, et al. Comparison of corrosion behaviors between Ti-based bulk metallic glasses and its composites [J]. J. Alloy. Compd., 2018, 750: 757
|
81 |
Liang S X, Jia Z, Liu Y J, et al. Compelling rejuvenated catalytic performance in metallic glasses [J]. Adv. Mater., 2018, 30: 1802764
|
82 |
Ding H P, Gong P, Yao K F, et al. The forming of amorphous alloy parts: A technological review [J]. Mater. Rev., 2020, 34(3): 139
|
82 |
丁华平, 龚攀, 姚可夫等. 非晶合金零件成形技术研究进展 [J]. 材料导报. 2020, 34(3): 139
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|