Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (3): 277-288    DOI: 10.11902/1005.4537.2020.089
  综合评述 本期目录 | 过刊浏览 |
非晶合金耐蚀性研究进展
王东亮, 丁华平, 马云飞, 龚攀(), 王新云
华中科技大学材料科学与工程学院 材料成形与模具技术国家重点实验室 武汉 430074
Research Progress on Corrosion Resistance of Metallic Glasses
WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan(), WANG Xinyun
State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(6429 KB)   HTML
摘要: 

综述了非晶合金耐蚀性的研究现状,归纳了合金成分、合金结构、制备工艺、腐蚀介质、表面状态、加载应力以及其他重要因素对非晶合金耐蚀性的影响规律,总结了非晶合金耐蚀性能的改善途径,并对非晶合金耐蚀性研究方面存在的问题和今后的发展趋势进行了探讨和展望。

关键词 非晶合金耐蚀性影响因素改善方法    
Abstract

Because of their unique amorphous structure, metallic glasses (MGs) exhibit better corrosion resistance compared with traditional crystalline metals and alloys. Thus, MGs have broad application prospects as novel corrosion-resistant materials. The research progress of corrosion resistance of MGs was summarized. The influence factors, such as the alloy composition, microstructure, preparation method, corrosion environment, surface state, stress state etc. on the corrosion resistance of MGs were introduced. The routes to improve the corrosion resistance of MGs were proposed. Finally, the future development trends of corrosion resistance of MGs were discussed and prospected.

Key wordsmetallic glass    corrosion resistance    influence factor    improving method
收稿日期: 2020-05-24     
ZTFLH:  TG174  
基金资助:湖北省自然科学基金(2018CFB576);国家自然科学基金(51725504);中央高校基本科研业务费(2018KFYRCPT001)
通讯作者: 龚攀     E-mail: pangong@hust.edu.cn
Corresponding author: GONG Pan     E-mail: pangong@hust.edu.cn
作者简介: 王东亮,男,1997年生,硕士生

引用本文:

王东亮, 丁华平, 马云飞, 龚攀, 王新云. 非晶合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
Dongliang WANG, Huaping DING, Yunfei MA, Pan GONG, Xinyun WANG. Research Progress on Corrosion Resistance of Metallic Glasses. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 277-288.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.089      或      https://www.jcscp.org/CN/Y2021/V41/I3/277

图1  非晶合金 (MGs) 和常见不锈钢 (SSs) 在3种溶液中的腐蚀行为
ElementContent x(Atomic fraction / %)Base alloy (Atomic fraction / %)Corroding solutionEffect on corrosion resistanceReferences
Sr0~1%Mg66Zn30Ca4-xSrxPhosphate-buffered salineEnhanced[33]
1%~1.5%Deteriorated
Y0~2.5%(Zr58Nb3Cu16Ni13Al10)100-xYx0.5 mol/L H2SO4Deteriorated[30]
1%(Zr55Al10Cu30Ni5)99YxPhosphate-buffered salineEnhanced[20]
Nb0~20%Zr46Cu(30.14-x)NbxAg8.36Al8Be7.50.1 mol/L HClEnhanced[34]
0.5 mol/L NaClEnhanced
0.5 mol/L H2SO4Enhanced
Nd0~0.5%Mg68-xZn28Ca4NdxSimulated body fluidEnhanced[25]
0.5%~1.5%Deteriorated
Cr0~30%CrxFe56-xCo7Mo14C15B6Y21 mol/L HClEnhanced[32]
30%~45%No difference
0~29.4%CrxFe58.8-xMo14.7C14.7B9.8Y21 mol/L HClEnhanced[35]
29.4%~44.1%No difference
0~8.3%Fe71.4-xC7.1Si4.4B6.5P8.6CrxAl2.09.7 mol/L H2SO4Enhanced[22]
8.3%~12.3%Deteriorated
0~5%Fe79.5-xSi9.5B11Crx0.1 mol/L NaClEnhanced[36]
B0~5%Zr66.7-xNi33.3Bx0.5 mol/L NaClB0.3>B0.1, B0.5>B0[19]
1 mol/L HClB0.5>B0.1, B0.3>B0
2 mol/L NaOHB0.1>B0.5>B0.3, B0
Co0~4%(Zr46Cu46Al8)100-xCox3.5%NaClEnhanced[28]
Ti0~4%(Cu37.6Zr46Ag8.4Al8)100-xTix1 mol/L NaOHEnhanced[26]
1 mol/L H2SO4Enhanced
1 mol/L H2SO4+0.01 mol/L NaClEnhanced
1 mol/L H2SO4+0.1 mol/L NaClEnhanced
Ag0~9%Zr53Co23.5-xAl23.5AgxPhosphate-buffered salineEnhanced[29]
Si0~2%Fe85.2SixB9P5-xCu0.8Boric-borate buffer solutionEnhanced[37]
C0~3%Fe73.5Cu1Nb3Si13.5CxB99-x0.1 mol/L H2SO4Enhanced[38]
Mn0~1.5%(Mg65Zn30Ca5)100-xMnxSimulated body fluidDeteriorated[24]
Ce3%~7%Al93-xCo7Cex0.6 mol/L HClCe4 is the best[39]
Au0~3%Ca47Mg18Zn35-xAuxRinger's solutionEnhanced[40]
P0~15%Fe43Cr16Mo16(C, B, P)251, 6, 12 mol/L HClP>B, C[21]
Ni0~0.4%[(Fe1-xNix)0.75B0.2Si0.05]96Nb40.5 mol/L HClEnhanced[27]
0.5 mol/L H2SO4Enhanced
0.5 mol/L NaOHEnhanced
Hf0~5%Zr55Ti3HfxCu32-xAl100.6 mol/L NaClEnhanced[31]
1 mol/L HClEnhanced
1 mol/L H2SO4Enhanced
表1  添加合金元素对非晶合金耐蚀性的影响总结
图2  Zr65Cu17.5Fe10Al7.5铸态和等温退火不同时间后在3.5%NaCl溶液中动电位极化曲线[41]
图3  铸态Cu47.5Zr47.5Al5棒 (5 mm) 和退火态棒 (3 mm) 在海水溶液中腐蚀表面的FESEM像[47]
图4  非晶合金Zr50.7Ni28Cu9Al12.3在1 mol/L HCl、0.5 mol/L H2SO4和0.5 mol/L NaCl溶液中Ecorr和pH值的关系[57]
图5  Co-Cr-Mo非晶合金腐蚀试验后注入C和未处理的表面形貌[72]
图6  室温下几种合金在3.5%NaCl溶液中的动电位极化曲线[79]
1 Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
2 Brenner A, Couch D E, Williams E K. Electrodeposition of alloys of phosphorus with nickel or cobalt [J]. J. Res. Nat. Bureau Stand., 1950, 44: 109
3 Greer A L, Sun Y H. Stored energy in metallic glasses due to strains within the elastic limit [J]. Philos. Mag., 2016, 96: 1643
4 Gan Z, Zhang C, Zhang Z, et al. Crystallization-dependent transition of corrosion resistance of an Fe-based bulk metallic glass under hydrostatic pressures[J]. Corros. Sci., 2021, 179: 109098
5 Han C, Wei Y H, Zhang H F, et al. Corrosion resistance and electrochemical behaviour of amorphous Ni84.9Cr7.4Si4.2Fe3.5 alloy in alkaline and acidic solutions [J]. Acta Metall. Sin.(Engl. Lett.), 2019, 32: 1421
6 Mao L, Zhu H W, Chen L, et al. Enhancement of corrosion resistance and biocompatibility of Mg-Nd-Zn-Zr alloy achieved with phosphate coating for vascular stent application [J]. J. Mater. Res. Technol., 2020, 9: 6409
7 Si C R, Duan B B, Zhang Q, et al. Microstructure, corrosion-resistance, and wear-resistance properties of subsonic flame sprayed amorphous Fe-Mo-Cr-Co coating with extremely high amorphous rate [J]. J. Mater. Res. Technol., 2020, 9: 3292
8 Zhang L C, Jia Z, Lyu F C, et al. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects [J]. Prog. Mater. Sci, 2019, 105: 100576
9 Ding S B, Xiang T F, Li C, et al. Fabrication of self-cleaning super-hydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel [J]. Mater. Des., 2017, 117: 280
10 Zhou Q Y, Sheikh S, Ou P, et al. Corrosion behavior of Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy in aqueous chloride solutions [J]. Electrochem. Commun., 2019, 98: 63
11 Jamali S S, Moulton S E, Tallman D E, et al. Self-healing characteristic of praseodymium conversion coating on AZNd Mg alloy studied by scanning electrochemical microscopy [J]. Electrochem. Commun., 2017, 76: 6
12 Tian W M, Du N, Li S M, et al. Metastable pitting corrosion of 304 stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2014, 85: 372
13 Laleh M, Hughes A E, Xu W, et al. On the unusual intergranular corrosion resistance of 316L stainless steel additively manufactured by selective laser melting [J]. Corros. Sci., 2019, 161: 108189
14 Coimbrão D D, Zepon G, Koga G Y, et al. Corrosion properties of amorphous, partially, and fully crystallized Fe68Cr8Mo4Nb4B16 alloy [J]. J. Alloy. Compd., 2020, 826: 154123
15 Tan C G, Jiang W J, Wu X Q, et al. Effect of crystallization on corrosion resistance of Cu52.5Ti30Zrll.5Ni6 bulk amorphous alloy [J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 751
16 Wu X Q, Xie C Q. Influence of crystallization on corrosion resistance of Al86Ni6La6Cu2 amorphous alloy [J]. J. Rare Earths, 2008, 26: 745
17 Bi F Q, Zhou B, Wang Y. Effect of alloying on Anti-corrosion performance of stainless steel: A review [J]. Mater. Rev., 2019, 33: 1206
17 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展 [J]. 材料导报, 2019, 33: 1206
18 Borgioli F, Galvanetto E, Bacci T. Corrosion behaviour of low temperature nitrided nickel-free, AISI 200 and AISI 300 series austenitic stainless steels in NaCl solution [J]. Corros. Sci., 2018, 136: 352
19 Xu J, Niu J Z, Zhang Z T, et al. Effects of B addition on glass formation, mechanical properties and corrosion resistance of the Zr66.7-xNi33.3Bx(x=0, 1, 3, and 5 at.%) metallic glasses [J]. JOM, 2016, 68: 682
20 Huang L, Qiao D, Green B A, et al. Bio-corrosion study on zirconium-based bulk-metallic glasses [J]. Intermetallics. 2009, 17(4): 195
21 Pang S J, Zhang T, Asami K, et al. Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance [J]. Acta Mater., 2002, 50: 489
22 Wang S L, Yi S. The corrosion behaviors of Fe-based bulk metallic glasses in a sulfuric solution at 70 ℃ [J]. Intermetallics, 2010, 18: 1950
23 Chattoraj I, Baunack S, Stoica M, et al. Electrochemical response of Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk amorphous alloy in different aqueous media [J]. Mater. Corros., 2004, 55: 36
24 Wang J L, Wan Y, Ma Z J, et al. Glass-forming ability and corrosion performance of Mn-doped Mg-Zn-Ca amorphous alloys for biomedical applications [J]. Rare Met., 2018, 37: 579
25 Zhou J, Li K, Wang B, et al. Impact of Nd addition on glass formation ability and corrosion resistance of Mg-Zn-Ca alloys [J]. Mater. Rev., 2019, 33: 73
25 周杰, 李克, 王彪等. 添加Nd对Mg-Zn-Ca合金非晶形成能力和耐蚀性的影响 [J]. 材料导报, 2019, 33: 73
26 Nie X P, Yang X H, Jiang J Z. Ti microalloying effect on corrosion resistance and thermal stability of CuZr-based bulk metallic glasses [J]. J. Alloy. Compd., 2009, 481: 498
27 Long Z L, Chang C T, Ding Y H, et al. Corrosion behavior of Fe-based ferromagnetic (Fe, Ni)-B-Si-Nb bulk glassy alloys in aqueous electrolytes [J]. J. Noncrystall. Solids, 2008, 354: 4609
28 Zhou W, Weng W P, Hou J X. Glass-forming ability and corrosion resistance of Zr-Cu-Al-Co bulk metallic glass [J]. J. Mater. Sci. Technol., 2016, 32: 349
29 Zhang C, Li N, Pan J, et al. Enhancement of glass-forming ability and bio-corrosion resistance of Zr-Co-Al bulk metallic glasses by the addition of Ag [J]. J. Alloy. Compd., 2010, 504 (): S163
30 Yu L S, Tang J L, Wang H, et al. Corrosion behavior of bulk (Zr58Nb3Cu16Ni13Al10)100-xYx(x=0, 0.5, 2.5 at.%) metallic glasses in sulfuric acid [J]. Corros. Sci., 2019, 150: 42
31 Jin Z S, Yang Y J, Zhang Z P, et al. Effect of Hf substitution Cu on glass-forming ability, mechanical properties and corrosion resistance of Ni-free Zr-Ti-Cu-Al bulk metallic glasses [J]. J. Alloy. Compd., 2019, 806: 668
32 Xu T, Pang S J, Li H F, et al. Corrosion resistant Cr-based bulk metallic glasses with high strength and hardness [J]. J. Non-Crystall. Solids, 2015, 410: 20
33 Li H F, Pang S J, Liu Y, et al. Biodegradable Mg-Zn-Ca-Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications [J]. Mater. Des., 2015, 67: 9
34 Cao Q P, Peng S, Zhao X N, et al. Effect of Nb substitution for Cu on glass formation and corrosion behavior of Zr-Cu-Ag-Al-Be bulk metallic glass [J]. J. Alloy. Compd., 2016, 683: 22
35 Xu T, Pang S J, Zhang T. Glass formation, corrosion behavior, and mechanical properties of novel Cr-rich Cr-Fe-Mo-C-B-Y bulk metallic glasses [J]. J. Alloy. Compd., 2015, 625: 318
36 Xu D D, Zhou B L, Wang Q Q, et al. Effects of Cr addition on thermal stability, soft magnetic properties and corrosion resistance of FeSiB amorphous alloys [J]. Corros. Sci., 2018, 138: 20
37 Dan Z H, Takenaka K, Zhang Y, et al. Effect of Si addition on the corrosion properties of amorphous Fe-based soft magnetic alloys [J]. J. Non-Crystall. Solids, 2014, 402: 36
38 Li X, Zhao X, Liu F, et al. Effect of C addition on the corrosion properties of amorphous Fe-based amorphous alloys [J]. Int. J. Mod. Phys., 2019, 33B: 1940006
39 Zhang L M, Zhang S D, Ma A L, et al. Influence of cerium content on the corrosion behavior of Al-Co-Ce amorphous alloys in 0.6 M NaCl solution [J]. J. Mater. Sci. Technol., 2019, 35: 1378
40 Babilas R, Bajorek A, Włodarczyk P, et al. Effect of Au addition on the corrosion activity of Ca-Mg-Zn bulk metallic glasses in Ringer's solution [J]. Mater. Chem. Phys., 2019, 226: 51
41 Zhou M, Hagos K, Huang H Z, et al. Improved mechanical properties and pitting corrosion resistance of Zr65Cu17.5Fe10Al7.5 bulk metallic glass by isothermal annealing [J]. J. Non-Crystall. Solids, 2016, 452: 50
42 González S, Pellicer E, Suriñach S, et al. Mechanical and corrosion behaviour of as-cast and annealed Zr60Cu20Al10Fe5Ti5 bulk metallic glass [J]. Intermetallics, 2012, 28: 149
43 Liu X J, Bu W D, Liu R G. Effects of heat treatment temperature on corrosion resistance of amorphous alloys [J]. J. Netshape Form. Eng., 2018, 10(6): 34
43 刘小江, 卜文德, 刘容光. 热处理温度对非晶合金耐蚀性能的影响 [J]. 精密成形工程, 2018, 10(6): 34
44 Poddar C, Ningshen S, Jayaraj J. Corrosion assessment of Ni60Nb30Ta10 metallic glass and its partially crystallized alloy in concentrated nitric acid environment [J]. J. Alloy. Compd., 2020, 813: 152172
45 Hua N B, Liao Z L, Wang Q T, et al. Effects of crystallization on mechanical behavior and corrosion performance of a ductile Zr68Al8Ni8Cu16 bulk metallic glass [J]. J. Non-Crystall. Solids, 2020, 529: 119782
46 Lin J G, Xu J, Wang W W, et al. Electrochemical behavior of partially crystallized amorphous Al86Ni9La5 alloys [J]. Mater. Sci. Eng., 2011, B176: 49
47 Gu Y D, Zheng Z, Niu S Z, et al. The seawater corrosion resistance and mechanical properties of Cu47.5Zr47.5Al5 bulk metallic glass and its composites [J]. J. Non-Crystall. Solids, 2013, 380: 135
48 Debnath M R, Kim D H, Fleury E. Dependency of the corrosion properties of in-situ Ti-based BMG matrix composites with the volume fraction of crystalline phase [J]. Intermetallics, 2012, 22: 255
49 Ríos C T, De Souza J S, Antunes R A. Preparation and characterization of the structure and corrosion behavior of wedge mold cast Fe43.2Co28.8B19.2Si4.8Nb4 bulk amorphous alloy [J]. J. Alloy. Compd., 2016, 682: 412
50 Fan H B, Zheng W, Wang G Y, et al. Corrosion behavior of Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass in sulfuric acid solutions [J]. Metall. Mater. Trans., 2011, 42A: 1524
51 Li G, Huang L, Dong Y, et al. Corrosion behavior of bulk metallic glasses in different aqueous solutions [J]. Sci. China Phys. Mech. Astron., 2010, 53: 435
52 Shin S, Kim T S, Kang S K. The influence of spark plasma sintering temperature on the mechanical properties and corrosion resistance of Zr65Al10Ni10Cu15 metallic glass powder [J]. Intermetallics, 2010, 18: 2005
53 Ma X, Zhen N, Guo J J, et al. Preparation of Ni-based bulk metallic glasses with high corrosion resistance [J]. J. Non-Crystall. Solids, 2016, 443: 91
54 Uhlenhaut D I, Furrer A, Uggowitzer P J, et al. Corrosion properties of glassy Mg70Al15Ga15 in 0.1 M NaCl solution [J]. Intermetallics, 2009, 17: 811
55 Liu Y, Wang W M, Zhang H D, et al. Effect of compression on the crystallization behavior and corrosion resistance of Al86Ni9La5 amorphous alloy [J]. J. Mater. Sci. Technol., 2012, 28: 1102
56 Padhy N, Ningshen S, Mudali U K. Electrochemical and surface investigation of zirconium based metallic glass Zr59Ti3Cu20Al10Ni8 alloy in nitric acid and sodium chloride media [J]. J. Alloy. Compd., 2010, 503: 50
57 Ge W J, Li B Y, Axinte E, et al. Crystallization and corrosion resistance in different aqueous solutions of Zr50.7Ni28Cu9Al12.3 amorphous alloy and its crystallization counterparts [J]. JOM, 2017, 69: 776
58 Liu S S, Xia C Q, Yang T, et al. High strength and superior corrosion resistance of the Ti-Ni-Cu-Zr crystal/glassy alloys with superelasticity [J]. Mater. Lett., 2019, 260: 126938
59 Gu J L, Shao Y, Shi L X, et al. Novel corrosion behaviours of the annealing and cryogenic thermal cycling treated Ti-based metallic glasses [J]. Intermetallics, 2019, 110: 106467
60 Hua N B, Huang Y X, Zheng Z Q, et al. Tribological and corrosion behaviors of Mg56.5Cu27Ag5Dy11.5 bulk metallic glass in NaCl solution [J]. J. Non-Crystall. Solids, 2017, 459: 36
61 Wang Y B, Li H F, Zheng Y F, et al. Correlation between corrosion performance and surface wettability in ZrTiCuNiBe bulk metallic glasses [J]. Appl. Phys. Lett., 2010, 96: 251909
62 Ma J, Zhang X Y, Wang D P, et al. Superhydrophobic metallic glass surface with superior mechanical stability and corrosion resistance [J]. Appl. Phys. Lett., 2014, 104: 173701
63 Gu J L, Shao Y, Bu H T, et al. An abnormal correlation between electron work function and corrosion resistance in Ti-Zr-Be-(Ni/Fe) metallic glasses [J]. Corros. Sci., 2020, 165: 108392
64 Li H F, Liu Y, Pang S J, et al. Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment [J]. Intermetallics, 2016, 73: 31
65 Gostin P F, Eigel D, Grell D, et al. Stress corrosion cracking of a Zr-based bulk metallic glass [J]. Mater. Sci. Eng., 2015, A639: 681
66 An W K, Cai A H, Xiong X, et al. Effect of tension on corrosive and thermal properties of Cu60Zr30Ti10 metallic glass [J]. J. Alloy. Compd., 2013, 563: 55
67 Shang S Z, Kong M L, Li Y. Corrsion Behavior of Zr53.5Cu26.5Ni5Al12Ag3 bulk metallic glass in NaOH [J]. J. Shenyang Univ. Chem. Technol., 2012, 26: 199
67 尚世智, 孔美玲, 李云. 锆基非晶合金在NaOH溶液中的腐蚀行为 [J]. 沈阳化工大学学报, 2012, 26: 199
68 Bi F Q, Yang S, Liang Z, et al. Study on high temperature and high pressure corrosion behavior of iron-based amorphous coatings in CO2 Cl- coexisting medium [J]. Chem. Eng. Mach., 2018, 45(2): 157
68 毕凤琴, 杨烁, 梁柱等. 铁基非晶涂层在CO2/Cl-共存介质中的高温高压腐蚀行为研究 [J]. 化工机械, 2018, 45(2): 157
69 Si J J, Chen X H, Cai Y H, et al. Corrosion behavior of Cr-based bulk metallic glasses in hydrochloric acid solutions [J]. Corros. Sci., 2016, 107: 123
70 Li G H, Wang W M, Ma H J, et al. Effect of different annealing atmospheres on crystallization and corrosion resistance of Al86Ni9La5 amorphous alloy [J]. Mater. Chem. Phys., 2011, 125: 136
71 Gebert A, Concustell A, Greer A L, et al. Effect of shot-peening on the corrosion resistance of a Zr-based bulk metallic glass [J]. Scripta Mater., 2010, 62: 635
72 Liu C, Zhou Z F, Li K Y. Improved corrosion resistance of CoCrMo alloy with self-passivation ability facilitated by carbon ion implantation [J]. Electrochim. Acta, 2017, 241: 331
73 Sharma P, Dhawan A, Sharma S K. Influence of nitrogen ion implantation on corrosion behavior of Zr55Cu30Ni5Al10 amorphous alloy [J]. J. Non-Crystall. Solids, 2019, 511: 186
74 Chen S S, Tu J X, Hu Q, et al. Corrosion resistance and in vitro bioactivity of Si-containing coating prepared on a biodegradable Mg-Zn-Ca bulk metallic glass by micro-arc oxidation [J]. J. Non-Crystall. Solids, 2017, 456: 125
75 Tailleart N R, Huang R, Aburada T, et al. Effect of thermally induced relaxation on passivity and corrosion of an amorphous Al-Co-Ce alloy [J]. Corros. Sci., 2012, 59: 238
76 Liu J T, Hou J X, Zhang X R, et al. Influence of remelting treatment on corrosion behavior of amorphous alloys [J]. Rare Met. Mater. Eng., 2017, 46: 296
77 Shi H Q, Tang C C, Zhao X Y, et al. Effect of isothermal annealing on mechanical performance and corrosion resistance of Ni-free Zr59Ti6Cu17.5Fe10Al7.5 bulk metallic glass [J]. J. Non-Crystall. Solids, 2020, 537: 120013
78 Yang Y J, Zhang Z P, Jin Z S, et al. A study on the corrosion behavior of the in-situ Ti-based bulk metallic glass matrix composites in acid solutions [J]. J. Alloy. Compd., 2018, 782: 927
79 Li J W, Yang L J, Ma H R, et al. Improved corrosion resistance of novel Fe-based amorphous alloys [J]. Mater. Des., 2016, 95: 225
80 Yang Y J, Jin Z S, Ma X Z, et al. Comparison of corrosion behaviors between Ti-based bulk metallic glasses and its composites [J]. J. Alloy. Compd., 2018, 750: 757
81 Liang S X, Jia Z, Liu Y J, et al. Compelling rejuvenated catalytic performance in metallic glasses [J]. Adv. Mater., 2018, 30: 1802764
82 Ding H P, Gong P, Yao K F, et al. The forming of amorphous alloy parts: A technological review [J]. Mater. Rev., 2020, 34(3): 139
82 丁华平, 龚攀, 姚可夫等. 非晶合金零件成形技术研究进展 [J]. 材料导报. 2020, 34(3): 139
[1] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[3] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[8] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[9] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[11] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[12] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[13] 张志英, 汤迦南, 余杰, 王旭东, 黄罗超, 邹俊文, 唐浩, 张继康, 陈亚涛, 程东鹏. 铜基非晶合金复合材料在NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
[14] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[15] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.