|
|
铝合金霉菌腐蚀研究进展 |
张雨轩, 陈翠颖, 刘宏伟( ), 李伟华 |
中山大学化学工程与技术学院 海洋科学与工程广东省实验室 珠海 519082 |
|
Research Progress on Mildew Induced Corrosion of Al-alloy |
ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei( ), LI Weihua |
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China |
引用本文:
张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
Yuxuan ZHANG,
Cuiying CHEN,
Hongwei LIU,
Weihua LI.
Research Progress on Mildew Induced Corrosion of Al-alloy. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 13-21.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2020.034
或
https://www.jcscp.org/CN/Y2021/V41/I1/13
|
1 |
Reboul M C, Baroux B. Metallurgical aspects of corrosion resistance of aluminium alloys [J]. Mater. Corros., 2011, 62: 215
|
2 |
Arrabal R, Mingo B, Pardo A, et al. Pitting corrosion of rheocast A356 aluminium alloy in 3.5wt.%NaCl solution [J]. Corros. Sci., 2013, 73: 342
|
3 |
Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Mater. Des., 2014, 56: 862
|
4 |
Ma T, Wang Z Y, Han W. A review of atmospheric corrosion of aluminum and aluminum alloys [J]. Corros. Sci. Prot. Technol., 2004, 16: 155
|
4 |
马腾, 王振尧, 韩薇. 铝和铝合金的大气腐蚀 [J]. 腐蚀科学与防护技术, 2004, 16: 155
|
5 |
Venugopal A, Panda R, Manwatkar S, et al. Effect of micro arc oxidation treatment on localized corrosion behaviour of AA7075 aluminum alloy in 3.5%NaCl solution [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 700
|
6 |
Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
|
7 |
Li Y C, Xu D K, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review [J]. J. Mater. Sci. Technol., 2018, 34: 1713
|
8 |
Liu T, Pan S, Wang Y N, et al. Pseudoalteromonas lipolytica accelerated corrosion of low alloy steel by the endogenous electron mediator pyomelanin [J]. Corros. Sci., 2020, 162: 108215
|
9 |
Jia R, Unsal T, Xu D K, et al. Microbiologically influenced corrosion and current mitigation strategies: A state of the art review [J]. Int. Biodeter. Biodegr., 2019, 137: 42
|
10 |
Liu H W, Gu T Y, Zhang G A, et al. Corrosion of X80 pipeline steel under sulfate-reducing bacterium biofilms in simulated CO2-saturated oilfield produced water with carbon source starvation [J]. Corros. Sci., 2018, 136: 47
|
11 |
Emerson D. The role of iron-oxidizing bacteria in biocorrosion: A review [J]. Biofouling, 2018, 34: 989
|
12 |
Liu T, Wang Y N, Pan S, et al. The addition of copper accelerates the corrosion of steel via impeding biomineralized film formation of Bacillus subtilis in seawater [J]. Corros. Sci., 2019, 149: 153
|
13 |
Wang X H, Wang L. A study of measures and test technology for fungus resistance to weaponry [J]. Aeronaut. Stand. Qual., 2003, (2): 38
|
13 |
王晓慧, 王丽. 武器装备防霉措施和试验技术探讨 [J]. 航空标准化与质量, 2003, (2): 38
|
14 |
Qu X Y, Deng L. Analysis of the environmental worthiness of shipborne weapons in marine environment [J]. Ship Electron. Eng., 2011, 31(4): 138
|
14 |
曲晓燕, 邓力. 舰载武器海洋环境适应性分析 [J]. 舰船电子工程, 2011, 31(4): 138
|
15 |
McNamara C J, Perry IV T D, Leard R, et al. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks [J]. Biofouling, 2005, 21: 257
|
16 |
Hagenauer A, Hilpert R, Hack T. Microbiological investigations of corrosion damages in aircraft [J]. Mater. Corros., 1994, 45: 355
|
17 |
Li X, Wang X H. Overview of three-proof design on carrier-based aircraft [J]. Equip. Environ. Eng., 2006, 3(4): 12
|
17 |
李星, 王晓慧. 舰载机三防设计技术研究综述 [J]. 装备环境工程, 2006, 3(4): 12
|
18 |
Cheng P, Song W, Chen L, et al. Molecular characterization of Aspergillus tubingensis and Eurotium amstelodami associated with black brick tea [J]. Int. J. Agric. Biol., 2016, 18: 489
|
19 |
Zhang J T, Wu L Y. Mildew protection design of airborne equipments [J]. Equip. Environ. Eng., 2007, 4(6): 70
|
19 |
张江涛, 吴龙益. 机载设备霉菌防护设计 [J]. 装备环境工程, 2007, 4(6): 70
|
20 |
Ayerst G. The effects of moisture and temperature on growth and spore germination in some fungi [J]. J. Stored Prod. Res., 1969, 5: 127
|
21 |
Martin-Sanchez P M, Gorbushina A A, Kunte H J, et al. A novel qPCR protocol for the specific detection and quantification of the fuel-deteriorating fungus Hormoconis resinae [J]. Biofouling, 2016, 32: 635
|
22 |
Zhu W F, Li K, Wang B, et al. Practical fungus-proof technology and experiment research of carrier-based aircraft hydraulic system [J]. Hydraul. Pneumat. Seals, 2014, 34(1): 71
|
22 |
朱武峰, 李昆, 王兵等. 舰载机液压系统实用防霉技术及试验研究 [J]. 液压气动与密封, 2014, 34(1): 71
|
23 |
Qu Q, Wang L, Li L, et al. Effect of the fungus, Aspergillus niger, on the corrosion behaviour of AZ31B magnesium alloy in artificial seawater [J]. Corros. Sci., 2015, 98: 249
|
24 |
Zhou W, Zhang Z G. Analysis on corrosion effect of mold pollution on aviation aluminum alloy equipment [J]. Environ. Sci. Manage., 2019, 44(1): 87
|
24 |
周伟, 张作刚. 霉菌污染对航空铝合金设备腐蚀作用分析研究 [J]. 环境科学与管理, 2019, 44(1): 87
|
25 |
Miečinskas P, Leinartas K, Uksienė V, et al. QCM study of microbiological activity during long-term exposure to atmosphere—aluminium colonisation by Aspergillus Niger [J]. J. Solid State Electrochem., 2007, 11: 909
|
26 |
Corvo F, Jirón-Lazos U, de la Rosa S, et al. Aluminum and anodized aluminum biocorrosion caused by Aspergillus niger [R]. Mexico, 2016: 9964
|
27 |
De Leo F, Campanella G, Proverbio E, et al. Laboratory tests of fungal biocorrosion of unbonded lubricated post-tensioned tendons [J]. Constr. Build. Mater., 2013, 49: 821
|
28 |
Akpan G U, Iliyasu M. Fungal populations inhabiting biofilms of corroded oil pipelines in the Niger Delta region of Nigeria [J]. Sky J. Microbiol. Res., 2015, 3: 36
|
29 |
Wang J L, Xiong F P, Liu H W, et al. Study of the corrosion behavior of Aspergillus niger on 7075-T6 aluminum alloy in a high salinity environment [J]. Bioelectrochemistry, 2019, 129: 10
|
30 |
Dai X Y, Wang H, Ju L K, et al. Corrosion of aluminum alloy 2024 caused by Aspergillus niger [J]. Int. Biodeter. Biodegr., 2016, 115: 1
|
31 |
Jirón-Lazos U, Corvo F, De la Rosa S C, et al. Localized corrosion of aluminum alloy 6061 in the presence of Aspergillus niger [J]. Int. Biodeter. Biodegr., 2018, 133: 17
|
32 |
Dong Z H, Shi W, Ruan H M, et al. Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique [J]. Corros. Sci., 2011, 53: 2978
|
33 |
Machuca L L, Bailey S I, Gubner R, et al. Effect of oxygen and biofilms on crevice corrosion of UNS S31803 and UNS N08825 in natural seawater [J]. Corros. Sci., 2013, 67: 242
|
34 |
Heyer A, D'Souza F, Morales C F L, et al. Ship ballast tanks a review from microbial corrosion and electrochemical point of view [J]. Ocean Eng., 2013, 70: 188
|
35 |
Liu S Y. Preparation of multifunctional anti-corrosion polyaniline composite coating on Al alloy under marine environment [D]. Hefei: University of Science and Technology of China, 2019
|
35 |
刘素云. 海洋环境用Al合金表面多功能耐蚀聚苯胺复合涂层的研制 [D]. 合肥: 中国科学技术大学, 2019
|
36 |
Liu H W, Xu D K, Wu Y N, et al. Research progress in corrosion of steels induced by sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol., 2015, 27: 409
|
36 |
刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 409
|
37 |
Qu Q, Li S L, Li L, et al. Adsorption and corrosion behaviour of Trichoderma harzianum for AZ31B magnesium alloy in artificial seawater [J]. Corros. Sci., 2017, 118: 12
|
38 |
Imo E O, Orji J C, Nweke C O. Influence of Aspergillus fumigatus on corrosion behaviour of mild steel and aluminium [J]. Int. J. Appl. Microbiol. Biotechnol. Res., 2018, 6: 61
|
39 |
Silva A M A, Santiago T M, Alves C R, et al. An evaluation of the corrosion behavior of aluminum surfaces in presence of fungi using atomic force microscopy and other tests [J]. Anti-Corros. Methods Mater., 2007, 54: 289
|
40 |
Rosales B M, Iannuzzi M. Aluminium AA2024 T351 aeronautical alloy: Part 1. Microbial influenced corrosion analysis [J]. Mater. Sci. Eng., 2008, A472: 15
|
41 |
Dou W W, Liu J L, Cai W Z, et al. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation [J]. Corros. Sci., 2019, 150: 258
|
42 |
Liu H W, Gu T Y, Lv Y L, et al. Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water [J]. Corros. Sci., 2017, 117: 24
|
43 |
Ma F L, Li J L, Zeng Z X, et al. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel [J]. J. Mater. Sci. Technol., 2019, 35: 448
|
44 |
Jia R, Yang D Q, Rahman H B A, et al. Laboratory testing of enhanced biocide mitigation of an oilfield biofilm and its microbiologically influenced corrosion of carbon steel in the presence of oilfield chemicals [J]. Int. Biodeter. Biodegr., 2017, 125: 116
|
45 |
Liu H W, Gu T Y, Zhang G A, et al. The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria [J]. Corros. Sci., 2016, 102: 93
|
46 |
Arafat El S S, Matzdorf C A, Spadafora S J, et al. Composition and process for removing and preventing mildew and fungal growth [P]. USA Pat, 7494670, 2009
|
47 |
Akid R, Wang H, Smith T J, et al. Biological functionalization of a Sol-Gel coating for the mitigation of microbial‐induced corrosion [J]. Adv. Funct. Mater., 2008, 18: 203
|
48 |
Liu Q Q, Lu L, Gao G, et al. Research progress on fungal corrosion of metals and their protective layers in atmos-pheric environments [J]. Chin. J. Eng., 2017, 39: 1463
|
48 |
刘倩倩, 卢琳, 高歌等. 大气环境中金属及其保护层霉菌腐蚀研究的进展 [J]. 工程科学学报, 2017, 39: 1463
|
49 |
Wang J L, Li C J, Zhang X X, et al. Corrosion behavior of Aspergillus niger on 7075 aluminum alloy and the inhibition effect of zinc pyrithione biocide [J]. J. Electrochem. Soc., 2019, 166: G39
|
50 |
Imo E O, Orji J C, Nweke C O. Corrosion and fungal growth inhibiting effects of Piper guineense extracts [J]. J. Appl. Environ. Microbiol., 2018, 6: 37
|
51 |
Shi J, Qu Y P. Study on organic coatings for mould corrosion resistance in ocean climate [J]. Surf. Technol., 2011, 40(1): 56
|
51 |
石娇, 曲彦平. 耐海洋环境中霉菌腐蚀有机涂层的研究 [J]. 表面技术, 2011, 40(1): 56
|
52 |
Zhao L H, Duan Y P. Mould resistance of protective layer on high-strength alloy structural steel and high-strength aluminum alloy [J]. Equip. Environ. Eng., 2015, 12(4): 82
|
52 |
赵立华, 段渝平. 高强度合金结构钢与高强度铝合金防护层的耐霉性研究 [J]. 装备环境工程, 2015, 12(4): 82
|
53 |
Brown T T, Lee J S. Microscopic evaluation of fungal cleaning protocols for aircraft coatings [J]. Microsc. Microanal., 2019, 25 (): 718
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|