Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (1): 13-21    DOI: 10.11902/1005.4537.2020.034
  综合评述 本期目录 | 过刊浏览 |
铝合金霉菌腐蚀研究进展
张雨轩, 陈翠颖, 刘宏伟(), 李伟华
中山大学化学工程与技术学院 海洋科学与工程广东省实验室 珠海 519082
Research Progress on Mildew Induced Corrosion of Al-alloy
ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei(), LI Weihua
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
全文: PDF(5589 KB)   HTML
摘要: 

结合近年来铝合金霉菌腐蚀机制与防护领域研究成果,介绍了代表性霉菌的种类及影响霉菌活性的主要因素,重点总结和讨论了铝合金霉菌腐蚀机制,主要包括酸蚀机制、浓差电池机制、以及其他可能存在直接电子传递机制和霉菌铝合金直接界面作用机制。霉菌通过新陈代谢可以产生大量的有机酸,能够显著地降低介质和生物膜内的pH,从而导致酸蚀引发局部腐蚀。霉菌在铝合金表面形成的生物膜是诱发氧浓差电池产生的原因之一,铝合金霉菌腐蚀过程中潜在的直接电子传递及铝合金和霉菌的直接界面作用也是导致铝合金局部腐蚀的重要原因之一。最后介绍了目前常用的铝合金霉菌腐蚀控制方法,展望了未来铝合金霉菌腐蚀的研究重点,为铝合金霉菌腐蚀研究提供参考。

关键词 铝合金霉菌酸蚀微生物腐蚀    
Abstract

Recent years, the corrosion of Al-alloy turned to be a serious issue, which directly influence the safe operation of engineering facilities made of Al-alloy. Based on the recent research results related to the mildew induced corrosion of Al-alloy, the representative species of mildew as well as the main factors close to the mildew activity were illustrated. Meanwhile, the relevant corrosion mechanisms were emphatically discussed, including acid corrosion, oxygen concentration cell, the possible direct electron transfer as well as the direct interfacial interaction between Al-alloy and mildew. Mildew can produce large amount of organic acids through metabolism, causing the decline of the pH values in test solution and biofilm, then leading to localized corrosion. As analyzed, the potential direct electron transfer and interfacial interaction between Al-alloy and mildew can be one of important causes, leading to the localized corrosion. Furthermore, the common control methods for mildew induced corrosion of Al-alloy were also reviewed. Finally, the future research focus of Al-alloy corrosion in the presence of mildew was also prospected.

Key wordsAl-alloy    mildew    acid corrosion    microbiologically influenced corrosion
收稿日期: 2020-01-05     
ZTFLH:  O646  
基金资助:国家自然科学基金(51901253);广东省自然科学基金(2019A1515011135);中央高校基本科研业务费专项(19lgzd18);深水油气管线关键技术与装备北京市重点实验室开放课题(BIPT201904)
通讯作者: 刘宏伟     E-mail: liuhw35@mail.sysu.edu.cn
Corresponding author: LIU Hongwei     E-mail: liuhw35@mail.sysu.edu.cn
作者简介: 张雨轩,男,1996年生,硕士生

引用本文:

张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
Yuxuan ZHANG, Cuiying CHEN, Hongwei LIU, Weihua LI. Research Progress on Mildew Induced Corrosion of Al-alloy. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 13-21.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.034      或      https://www.jcscp.org/CN/Y2021/V41/I1/13

图1  曲霉菌落结构形貌、微观结构及其孢子的微观形貌[18]
SpecyLowest growth temperature / ℃Optimum growth temperature / ℃Highest growth temperature / ℃
Penicillium835~4248
Klebsiella104245
Proteusvulgaris84248
Streptomycete1845~5558
Aspergillus flavus530~4243
Aspergillus niger535~4452
Fusarium oxysporum220~7045
表1  部分代表性霉菌的生长温度范围
图2  铝合金表面霉菌生物膜形貌,铝合金在3.5%NaCl溶液中腐蚀测试18 d后的腐蚀形貌及其腐蚀坑深度的变化[29]
图3  好氧条件下6061铝合金霉菌局部腐蚀机制[31]
图4  铝合金点蚀机制示意图[35]
1 Reboul M C, Baroux B. Metallurgical aspects of corrosion resistance of aluminium alloys [J]. Mater. Corros., 2011, 62: 215
2 Arrabal R, Mingo B, Pardo A, et al. Pitting corrosion of rheocast A356 aluminium alloy in 3.5wt.%NaCl solution [J]. Corros. Sci., 2013, 73: 342
3 Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Mater. Des., 2014, 56: 862
4 Ma T, Wang Z Y, Han W. A review of atmospheric corrosion of aluminum and aluminum alloys [J]. Corros. Sci. Prot. Technol., 2004, 16: 155
4 马腾, 王振尧, 韩薇. 铝和铝合金的大气腐蚀 [J]. 腐蚀科学与防护技术, 2004, 16: 155
5 Venugopal A, Panda R, Manwatkar S, et al. Effect of micro arc oxidation treatment on localized corrosion behaviour of AA7075 aluminum alloy in 3.5%NaCl solution [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 700
6 Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
7 Li Y C, Xu D K, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review [J]. J. Mater. Sci. Technol., 2018, 34: 1713
8 Liu T, Pan S, Wang Y N, et al. Pseudoalteromonas lipolytica accelerated corrosion of low alloy steel by the endogenous electron mediator pyomelanin [J]. Corros. Sci., 2020, 162: 108215
9 Jia R, Unsal T, Xu D K, et al. Microbiologically influenced corrosion and current mitigation strategies: A state of the art review [J]. Int. Biodeter. Biodegr., 2019, 137: 42
10 Liu H W, Gu T Y, Zhang G A, et al. Corrosion of X80 pipeline steel under sulfate-reducing bacterium biofilms in simulated CO2-saturated oilfield produced water with carbon source starvation [J]. Corros. Sci., 2018, 136: 47
11 Emerson D. The role of iron-oxidizing bacteria in biocorrosion: A review [J]. Biofouling, 2018, 34: 989
12 Liu T, Wang Y N, Pan S, et al. The addition of copper accelerates the corrosion of steel via impeding biomineralized film formation of Bacillus subtilis in seawater [J]. Corros. Sci., 2019, 149: 153
13 Wang X H, Wang L. A study of measures and test technology for fungus resistance to weaponry [J]. Aeronaut. Stand. Qual., 2003, (2): 38
13 王晓慧, 王丽. 武器装备防霉措施和试验技术探讨 [J]. 航空标准化与质量, 2003, (2): 38
14 Qu X Y, Deng L. Analysis of the environmental worthiness of shipborne weapons in marine environment [J]. Ship Electron. Eng., 2011, 31(4): 138
14 曲晓燕, 邓力. 舰载武器海洋环境适应性分析 [J]. 舰船电子工程, 2011, 31(4): 138
15 McNamara C J, Perry IV T D, Leard R, et al. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks [J]. Biofouling, 2005, 21: 257
16 Hagenauer A, Hilpert R, Hack T. Microbiological investigations of corrosion damages in aircraft [J]. Mater. Corros., 1994, 45: 355
17 Li X, Wang X H. Overview of three-proof design on carrier-based aircraft [J]. Equip. Environ. Eng., 2006, 3(4): 12
17 李星, 王晓慧. 舰载机三防设计技术研究综述 [J]. 装备环境工程, 2006, 3(4): 12
18 Cheng P, Song W, Chen L, et al. Molecular characterization of Aspergillus tubingensis and Eurotium amstelodami associated with black brick tea [J]. Int. J. Agric. Biol., 2016, 18: 489
19 Zhang J T, Wu L Y. Mildew protection design of airborne equipments [J]. Equip. Environ. Eng., 2007, 4(6): 70
19 张江涛, 吴龙益. 机载设备霉菌防护设计 [J]. 装备环境工程, 2007, 4(6): 70
20 Ayerst G. The effects of moisture and temperature on growth and spore germination in some fungi [J]. J. Stored Prod. Res., 1969, 5: 127
21 Martin-Sanchez P M, Gorbushina A A, Kunte H J, et al. A novel qPCR protocol for the specific detection and quantification of the fuel-deteriorating fungus Hormoconis resinae [J]. Biofouling, 2016, 32: 635
22 Zhu W F, Li K, Wang B, et al. Practical fungus-proof technology and experiment research of carrier-based aircraft hydraulic system [J]. Hydraul. Pneumat. Seals, 2014, 34(1): 71
22 朱武峰, 李昆, 王兵等. 舰载机液压系统实用防霉技术及试验研究 [J]. 液压气动与密封, 2014, 34(1): 71
23 Qu Q, Wang L, Li L, et al. Effect of the fungus, Aspergillus niger, on the corrosion behaviour of AZ31B magnesium alloy in artificial seawater [J]. Corros. Sci., 2015, 98: 249
24 Zhou W, Zhang Z G. Analysis on corrosion effect of mold pollution on aviation aluminum alloy equipment [J]. Environ. Sci. Manage., 2019, 44(1): 87
24 周伟, 张作刚. 霉菌污染对航空铝合金设备腐蚀作用分析研究 [J]. 环境科学与管理, 2019, 44(1): 87
25 Miečinskas P, Leinartas K, Uksienė V, et al. QCM study of microbiological activity during long-term exposure to atmosphere—aluminium colonisation by Aspergillus Niger [J]. J. Solid State Electrochem., 2007, 11: 909
26 Corvo F, Jirón-Lazos U, de la Rosa S, et al. Aluminum and anodized aluminum biocorrosion caused by Aspergillus niger [R]. Mexico, 2016: 9964
27 De Leo F, Campanella G, Proverbio E, et al. Laboratory tests of fungal biocorrosion of unbonded lubricated post-tensioned tendons [J]. Constr. Build. Mater., 2013, 49: 821
28 Akpan G U, Iliyasu M. Fungal populations inhabiting biofilms of corroded oil pipelines in the Niger Delta region of Nigeria [J]. Sky J. Microbiol. Res., 2015, 3: 36
29 Wang J L, Xiong F P, Liu H W, et al. Study of the corrosion behavior of Aspergillus niger on 7075-T6 aluminum alloy in a high salinity environment [J]. Bioelectrochemistry, 2019, 129: 10
30 Dai X Y, Wang H, Ju L K, et al. Corrosion of aluminum alloy 2024 caused by Aspergillus niger [J]. Int. Biodeter. Biodegr., 2016, 115: 1
31 Jirón-Lazos U, Corvo F, De la Rosa S C, et al. Localized corrosion of aluminum alloy 6061 in the presence of Aspergillus niger [J]. Int. Biodeter. Biodegr., 2018, 133: 17
32 Dong Z H, Shi W, Ruan H M, et al. Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique [J]. Corros. Sci., 2011, 53: 2978
33 Machuca L L, Bailey S I, Gubner R, et al. Effect of oxygen and biofilms on crevice corrosion of UNS S31803 and UNS N08825 in natural seawater [J]. Corros. Sci., 2013, 67: 242
34 Heyer A, D'Souza F, Morales C F L, et al. Ship ballast tanks a review from microbial corrosion and electrochemical point of view [J]. Ocean Eng., 2013, 70: 188
35 Liu S Y. Preparation of multifunctional anti-corrosion polyaniline composite coating on Al alloy under marine environment [D]. Hefei: University of Science and Technology of China, 2019
35 刘素云. 海洋环境用Al合金表面多功能耐蚀聚苯胺复合涂层的研制 [D]. 合肥: 中国科学技术大学, 2019
36 Liu H W, Xu D K, Wu Y N, et al. Research progress in corrosion of steels induced by sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol., 2015, 27: 409
36 刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 409
37 Qu Q, Li S L, Li L, et al. Adsorption and corrosion behaviour of Trichoderma harzianum for AZ31B magnesium alloy in artificial seawater [J]. Corros. Sci., 2017, 118: 12
38 Imo E O, Orji J C, Nweke C O. Influence of Aspergillus fumigatus on corrosion behaviour of mild steel and aluminium [J]. Int. J. Appl. Microbiol. Biotechnol. Res., 2018, 6: 61
39 Silva A M A, Santiago T M, Alves C R, et al. An evaluation of the corrosion behavior of aluminum surfaces in presence of fungi using atomic force microscopy and other tests [J]. Anti-Corros. Methods Mater., 2007, 54: 289
40 Rosales B M, Iannuzzi M. Aluminium AA2024 T351 aeronautical alloy: Part 1. Microbial influenced corrosion analysis [J]. Mater. Sci. Eng., 2008, A472: 15
41 Dou W W, Liu J L, Cai W Z, et al. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation [J]. Corros. Sci., 2019, 150: 258
42 Liu H W, Gu T Y, Lv Y L, et al. Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water [J]. Corros. Sci., 2017, 117: 24
43 Ma F L, Li J L, Zeng Z X, et al. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel [J]. J. Mater. Sci. Technol., 2019, 35: 448
44 Jia R, Yang D Q, Rahman H B A, et al. Laboratory testing of enhanced biocide mitigation of an oilfield biofilm and its microbiologically influenced corrosion of carbon steel in the presence of oilfield chemicals [J]. Int. Biodeter. Biodegr., 2017, 125: 116
45 Liu H W, Gu T Y, Zhang G A, et al. The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria [J]. Corros. Sci., 2016, 102: 93
46 Arafat El S S, Matzdorf C A, Spadafora S J, et al. Composition and process for removing and preventing mildew and fungal growth [P]. USA Pat, 7494670, 2009
47 Akid R, Wang H, Smith T J, et al. Biological functionalization of a Sol-Gel coating for the mitigation of microbial‐induced corrosion [J]. Adv. Funct. Mater., 2008, 18: 203
48 Liu Q Q, Lu L, Gao G, et al. Research progress on fungal corrosion of metals and their protective layers in atmos-pheric environments [J]. Chin. J. Eng., 2017, 39: 1463
48 刘倩倩, 卢琳, 高歌等. 大气环境中金属及其保护层霉菌腐蚀研究的进展 [J]. 工程科学学报, 2017, 39: 1463
49 Wang J L, Li C J, Zhang X X, et al. Corrosion behavior of Aspergillus niger on 7075 aluminum alloy and the inhibition effect of zinc pyrithione biocide [J]. J. Electrochem. Soc., 2019, 166: G39
50 Imo E O, Orji J C, Nweke C O. Corrosion and fungal growth inhibiting effects of Piper guineense extracts [J]. J. Appl. Environ. Microbiol., 2018, 6: 37
51 Shi J, Qu Y P. Study on organic coatings for mould corrosion resistance in ocean climate [J]. Surf. Technol., 2011, 40(1): 56
51 石娇, 曲彦平. 耐海洋环境中霉菌腐蚀有机涂层的研究 [J]. 表面技术, 2011, 40(1): 56
52 Zhao L H, Duan Y P. Mould resistance of protective layer on high-strength alloy structural steel and high-strength aluminum alloy [J]. Equip. Environ. Eng., 2015, 12(4): 82
52 赵立华, 段渝平. 高强度合金结构钢与高强度铝合金防护层的耐霉性研究 [J]. 装备环境工程, 2015, 12(4): 82
53 Brown T T, Lee J S. Microscopic evaluation of fungal cleaning protocols for aircraft coatings [J]. Microsc. Microanal., 2019, 25 (): 718
[1] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[2] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[3] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[4] 何勇君, 张天遂, 王海涛, 张斐, 李广芳, 刘宏芳. 微生物腐蚀杀菌剂研究进展[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[5] 吕美英, 李振欣, 杜敏, 万紫轩. 培养基对微生物腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[6] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[7] 张欣, 林木烟, 杨光恒, 王泽华, 邵佳, 周泽华. Er对海工5052铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[8] 李光泉, 李广芳, 王俊强, 张天遂, 张斐, 蒋习民, 刘宏芳. 临海管道微生物腐蚀损伤机制与防护[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[9] 战栋栋, 王成, 钱吉裕, 王文, 周仝, 朱圣龙, 王福会. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 383-388.
[10] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[11] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[12] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[13] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[14] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[15] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.