Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (5): 398-408    DOI: 10.11902/1005.4537.2019.272
  海洋材料腐蚀与防护专辑 本期目录 | 过刊浏览 |
淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究
翟思昕, 杨幸运, 杨继兰, 顾剑锋()
上海交通大学材料改性与数值模拟研究所 上海 200240
Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater
ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng()
Institute of Materials Modification and Modelling, Shanghai Jiao Tong University, Shanghai 200240, China
全文: PDF(20590 KB)   HTML
摘要: 

利用XRD、SEM和TEM等测试方法研究了淬火-配分-回火 (Q-P-T) 钢热处理后的物相结构和显微组织形貌,并以相同成分的淬火-回火 (Q&T) 钢和不含碳化物的淬火-配分 (Q&P) 钢为参照,利用失重法、电化学测试等方法研究了Q-P-T钢在模拟海水环境3.5% (质量分数) NaCl溶液中的腐蚀行为。结果表明,Q&T钢内的残余奥氏体主要以薄膜状分布在马氏体板条间,其含量低于3% (体积分数),而Q&P钢和Q-P-T钢内的残余奥氏体则以薄片状分布在马氏体板条间,其平均含量分别为15.35% (体积分数) 和14.6% (体积分数);含碳化物的Q-P-T钢的耐蚀性优于不含碳化物的Q&P钢,且经配分的Q-P-T和Q&P钢的耐蚀性能稍优于Q&T钢。4种钢表面腐蚀产物的演变规律基本一致,即初期腐蚀产物以β-FeOOH和γ-FeOOH为主,随浸泡时间的延长,逐渐以α-FeOOH和Fe3O4为主;4种试样腐蚀表面初期均分布着尺寸不一的点蚀坑,随浸泡时间的延长,逐渐变为均匀腐蚀。

关键词 淬火-配分-回火钢残余奥氏体碳化物海水腐蚀电化学    
Abstract

The phase constituent and microstructure morphology of a quenching-partitioning-tempering (Q-P-T) steel after heat treatment were studied by XRD, SEM and TEM, while taking a quenching and tempering (Q&T) steel and a carbide-free quenching and partitioning (Q&P) steel of the same composition as references. The corrosion behavior of Q-P-T steel in simulated seawater namely 3.5% (mass fraction) NaCl solution, was examined via weight loss method and electrochemical means. The results showed that the retained austenite in Q&T steel was mainly distributed between martensite laths as thin-films with a volume fraction of less than 3% (volume fraction), while the retained austenite in Q&P steel and Q-P-T steel was distributed as flakes with an average volume fraction of about 15.35% and 14.6%, respectively. In addition, the Q-P-T steel had better corrosion resistance than the carbide-free Q&P steel, whereas the Q-P-T and Q&P steels had slightly better corrosion resistance than Q&T steel. The evolution of corrosion products on the four steels was basically consistent, that is, the initial corrosion products composed mainly of β-FeOOH and γ-FeOOH. With the prolong of the immersion time, α-FeOOH and Fe3O4 were gradually formed. Corrosion pits of various sizes were distributed on the surface of the four steels, which then gradually turns to be uniform corrosion with the prolong of immersion time.

Key wordsquenching-partitioning-tempering steel    retained austenite    carbide    seawater corrosion    electrochemistry
收稿日期: 2019-12-20     
ZTFLH:  TD172.5  
基金资助:中国博士后科学基金(2018M632111)
通讯作者: 顾剑锋     E-mail: gujf@sjtu.edu.cn
Corresponding author: GU Jianfeng     E-mail: gujf@sjtu.edu.cn
作者简介: 翟思昕,女,1996年生,硕士生

引用本文:

翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
Sixin ZHAI, Xingyun YANG, Jilan YANG, Jianfeng GU. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 398-408.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.272      或      https://www.jcscp.org/CN/Y2020/V40/I5/398

SteelMass fraction%Characteristic temperature / ℃
CMnSiCrVAc1Ac3MsMf
81#0.411.561.54------725±5820±5307±5122±5
82#0.421.551.57---0.16730±5825±5297±585±5
表1  实验钢材的化学成分和相应的相变特征温度
图1  腐蚀前81-Q&T, 81-Q&P, 82-Q&T和82-QPT试样的SEM形貌
图 2  4种试样的XRD分析和饱和磁化曲线图
图 3  81-Q&T,81-Q&P和82-QPT试样的TEM像及相应的选区电子衍射花样
图4  4种试样在3.5%NaCl溶液中的腐蚀失重和腐蚀速率随浸泡时间的变化
图5  4种试样在3.5%NaCl溶液中的极化曲线
SpecimenEcorr / VIcorr / μA·cm-2-βc / mV·dec-1βa / mV·dec-1Eb / mVEd / mVIp / μA·cm-2
81-Q&T-0.9640.35943.2131.74-0.58-0.3881.43
81-Q&P-0.9810.349128.4642.99-0.55-0.3656.29
82-Q&T-0.9460.22657.0633.58-0.56-0.48129.16
82-QPT-0.9710.121105.0358.39-0.53-0.3755.10
表2  4种试样在3.5%NaCl溶液中的极化曲线拟合参数
图6  4种试样在3.5%NaCl溶液中的电化学阻抗谱
图7  4种试样在3.5%NaCl溶液中的等效拟合电路图
SpecimenRs / Ω·cm-2RP / kΩ·cm-2Q / 10-3 Ω-1·cm-2nx2 / 10-3
81-Q&T45.792.480.290.890.05
81-Q&P50.182.780.210.950.07
82-Q&T54.733.590.150.880.03
82-QPT44.573.910.230.960.03
表3  浸泡在3.5%NaCl溶液中的4种试样阻抗谱拟合电路的各项参数值
图8  81-Q&T试样腐蚀后的表面腐蚀产物形貌
图9  81-Q&P试样腐蚀后的表面腐蚀产物形貌
图 10  82-Q&T试样腐蚀后的表面腐蚀产物形貌
图11  82-QPT试样腐蚀后的表面腐蚀产物形貌
图12  82-QPT试样在3.5%NaCl溶液中浸泡32 h、43 d和89 d后表面腐蚀产物的XRD图谱
图 13  不同浸泡时间下4种试样清洗腐蚀产物后的形貌
[1] Hsu T Y. Quenching-partitioning-tempering process for ultra-high strength steel [J]. Int. Heat Treat. Surf. Eng., 2008, 2: 64
[2] Speer J G, Streicher A M, Matlock D K, et al. Quenching and partitioning: A fundamentally new process to create high strength trip sheet microstructures [A]. Austenite Formation and Decomposition [C]. Chicago, 2003: 505
[3] Speer J G, Assunção F C R, Matlock D K, et al. The "quenching and partitioning" process: Background and recent progress [J]. Mater. Res., 2005, 8: 417
[4] Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Mater., 2003, 51: 2611
[5] HajyAkbary F, Sietsma J, Miyamoto G, et al. Interaction of carbon partitioning, carbide precipitation and bainite formation during the Q&P process in a low C steel [J]. Acta Mater., 2016, 104: 72
[6] Lu S Y, Yao K F, Chen Y B, et al. Effect of quenching and partitioning on the microstructure evolution and electrochemical properties of a martensitic stainless steel [J]. Corros. Sci., 2016, 103: 95
doi: 10.1016/j.corsci.2015.11.010
[7] Yang J L, Lu Y F, Guo Z H, et al. Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5wt.%NaCl solution [J]. Corros. Sci., 2018, 130: 64
doi: 10.1016/j.corsci.2017.10.027
[8] Edmonds D V, He K, Rizzo F C, et al. Quenching and partitioning martensite—A novel steel heat treatment [J]. Mater. Sci. Eng., 2006, A438-440: 25
[9] De Moor E, Speer J G, Matlock D K, et al. Quenching and partitioning of CMnSi steels containing elevated manganese levels [J]. Steel Res. Int., 2012, 83: 322
doi: 10.1002/srin.v83.4
[10] Jatczak C F. Retained austenite and its measurement by X-ray diffraction [J]. SAE Trans., 1980, 89: 1657
[11] Zhao L, Van Dijk N H, Brück E, et al. Magnetic and X-ray diffraction measurements for the determination of retained austenite in TRIP steels [J]. Mater. Sci. Eng., 2001, A313: 145
[12] Peng X. Research on electrochemical corrosion behaviors and parameters of rusted carbon steel in marine environment [D]. Qingdao: Ocean University of China, 2013
[12] (彭欣. 海水环境中带锈碳钢腐蚀电化学行为及相关参数的研究 [D]. 青岛: 中国海洋大学, 2013)
[13] Rui J Q. Corrosion and passivation properties of 15Cr supermartensitic stainless steels [D]. Kunming: Kunming University of Science and Technology, 2013
[13] (芮家群. 15Cr超级马氏体不锈钢的腐蚀及钝化行为的研究 [D]. 昆明: 昆明理工大学, 2013)
[14] Osório W R, Peixoto L C, Garcia L R, et al. Electrochemical corrosion response of a low carbon heat treated steel in a NaCl solution [J]. Mater. Corros., 2009, 60: 804
[15] Chen Y Y, Tzeng H J, Wei L I, et al. Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions [J]. Corros. Sci., 2005, 47: 1001
doi: 10.1016/j.corsci.2004.04.009
[16] Ma Y T, Li Y, Wang F H. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment [J]. Corros. Sci., 2010, 52: 1796
[17] De la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
[18] Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51: 997
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[5] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[6] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[7] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[8] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[9] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[10] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[11] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[12] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[13] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[14] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[15] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.