Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (5): 389-397    DOI: 10.11902/1005.4537.2019.212
  海洋材料腐蚀与防护专辑 本期目录 | 过刊浏览 |
海水环境中异化铁还原菌所致金属材料腐蚀的研究进展
王玉1,2,3,4, 吴佳佳1,3,4, 张盾1,3,4()
1 中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室 青岛 266071
2 中国科学院大学 北京 100049
3 中国科学院海洋大科学研究中心 青岛 266071
4 青岛海洋科学与技术国家实验室 海洋腐蚀与防护开放工作室 青岛 266237
Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater
WANG Yu1,2,3,4, WU Jiajia1,3,4, ZHANG Dun1,3,4()
1 Key laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
4 Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
全文: PDF(1722 KB)   HTML
摘要: 

综述了铁还原菌 (IRB) 对海洋中钢铁等材料腐蚀影响的国内外研究进展。阐述了IRB种类和代谢方式的多样性,介绍了其在代谢过程中的电子传递方式;总结了海水环境中IRB所致金属腐蚀机理的研究现状,分析了不同研究者的结论存在差异的原因;最后介绍了研究IRB腐蚀影响常用的方法,并对今后的研究方向提出相应的建议。

关键词 海水腐蚀微生物腐蚀铁还原菌异化铁还原    
Abstract

Dissimilatory iron reduction is an important form of iron cycle on the earth, and the iron-reducing bacteria (IRB) is one of the main participants. Based on the influence of IRB on corrosion of iron and steel materials in the ocean, this paper reviewed and analyzed the related reports at home and abroad, and put forward some suggestions. Firstly, this paper expounded the diversity of IRB species and metabolic modes, introduced the modes of extracellular electron transfer in the metabolic process. And then, the current research status for theories of the IRB influenced corrosion of metal in seawater was summarized, and the reasons for the differences in the conclusions of different researchers were discussed. Finally, the common research methods of the IRB influenced corrosion were introduced, and suggestions for future research were put forward as well.

Key wordsseawater corrosion    microbiologically influenced corrosion    iron-reduction bacteria    dissimilatory iron reduction
收稿日期: 2019-11-16     
ZTFLH:  TG172.7  
基金资助:国家重点研发计划(2016YFB0300604);国家自然科学基金(41806087);国家自然科学基金(51771180)
通讯作者: 张盾     E-mail: zhangdun@qdio.ac.cn
Corresponding author: ZHANG Dun     E-mail: zhangdun@qdio.ac.cn
作者简介: 王玉,女,1992年生,博士生

引用本文:

王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
Yu WANG, Jiajia WU, Dun ZHANG. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 389-397.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.212      或      https://www.jcscp.org/CN/Y2020/V40/I5/389

GenusOriginal sourceCharacteristic description
BacterialDesulfuromonasMarine sedimentGram-negative bacilli, obligate anaerobes, atrichic, c-cytochrome, symbiotic with Marinobacter [11]
ShewanellaSeawater, intertidal zone, marine sediment, marine organism, etcGram-negative bacilli, facultative anaerobic, single polar flagellum, optimal temperature 30 ℃, some of them symbiotic with Desulfovibrio, Brevibacillus and algae[12,13,14]
GeobacterMarine sedimentGram-negative bacilli, obligate anaerobes, optimal temperature 22 ℃, symbiotic with Shewanella, or interspecies symbiosis[15]
RhodoferaxBay sedimentGram-negative bacilli, facultative anaerobic, single polar flagellum, optimal temperature 25 ℃, symbiotic with Azoarcus, Methanospirillum and Pseudomonas [16,17]
DeferribacterArabian Sea, off-shore oil facility, deep hydrothermal vents (east pacific rise and the mid-atlantic ridge)Obligate anaerobes or facultative anaerobic, multi-electron acceptor, symbiotic with Epsilonproteobacteria [18,19,20,21]
ArchaeaHyperthermusDeep hydrothermal zoneObligate anaerobes, grow above 90 ℃, inactive under 80 ℃[22]
GeoglobusAshadze fieldOnly H2 as electron donor to reduce insoluble Fe(Ⅲ)[23]
表1  海水环境已知的部分IRB种类
图1  微生物作用于Fe(Ⅲ) 氧化物表面传递电子的3种方式[31]
图2  IRB引起的腐蚀促进机理图
图3  IRB引起的腐蚀抑制机理图
[1] Mansfeld F. The interaction of bacteria and metal surfaces [J]. Electrochim. Acta, 2007, 52: 7670
[2] Shi X B, Yang C G, Yan W, et al. Microbiologically influenced corrosion of pipeline steels [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 9
[2] (史显波, 杨春光, 严伟等. 管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2019, 39: 9)
[3] Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibriovulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14
doi: 10.1016/j.bioelechem.2014.06.010 pmid: 25023048
[4] Yi Y, Cho P, Al Zaabi A, et al. Potentiodynamic polarization behaviour of AISI type 316 stainless steel in NaCl solution [J]. Corros. Sci., 2013, 74: 92
[5] Zuo R J. Biofilms: Strategies for metal corrosion inhibition employing microorganisms [J]. Appl. Microbiol. Biotechnol., 2007, 76: 1245
doi: 10.1007/s00253-007-1130-6 pmid: 17701408
[6] Jia R, Unsal T, Xu D K, et al. Microbiologically influenced corrosion and current mitigation strategies: A state of the art review [J]. Int. Biodeterior. Biodegrad., 2019, 137: 42
[7] Jia R, Yang D Q, Xu D K, et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 118: 38
doi: 10.1016/j.bioelechem.2017.06.013 pmid: 28715664
[8] Vargas M, Kashefi K, Blunt-Harris E L, et al. Microbiological evidence for Fe(III) reduction on early Earth [J]. Nature, 1998, 395: 65
doi: 10.1038/25720 pmid: 9738498
[9] Guan F, Zhai X F, Duan J Z, et al. Progress on influence of cathodic polarization on sulfate-reducing bacteria induced corrosion [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 1
[9] (管方, 翟晓凡, 段继周等. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 1)
doi: 10.11902/1005.4537.2016.216
[10] Javaherdashti R. Microbiologically Influenced Corrosion-An Engineering Insight [M]. Switzerland: Springer International Publishing, 2017
[11] Rousseau R, Santaella C, Bonnafous A, et al. Halotolerant bioanodes: The applied potential modulates the electrochemical characteristics, the biofilm structure and the ratio of the two dominant genera [J]. Bioelectrochemistry, 2016, 112: 24
doi: 10.1016/j.bioelechem.2016.06.006 pmid: 27429069
[12] Liu W Z, Wang A J, Sun D, et al. Characterization of microbial communities during anode biofilm reformation in a two-chambered microbial electrolysis cell (MEC) [J]. J. Biotechnol., 2012, 157: 628
doi: 10.1016/j.jbiotec.2011.09.010 pmid: 21939699
[13] Li J L, Wang T, Yu S X, et al. Community characteristics and ecological roles of bacterial biofilms associated with various algal settlements on coastal reefs [J]. J. Environ. Manage., 2019, 250: 109459
[14] Bayat Z, Hassanshahian M, Hesni M A. Enrichment and isolation of crude oil degrading bacteria from some mussels collected from the Persian Gulf [J]. Mar. Pollut. Bull., 2015, 101: 85
[15] You Y S, Zheng S L, Zang H M, et al. Stimulatory effect of magnetite on the syntrophic metabolism of Geobacter co-cultures: Influences of surface coating [J]. Geochim. Cosmochim. Acta, 2019, 256: 82
[16] Zhao Z Q, Sun C, Li Y, et al. Upgrading current method of anaerobic co-digestion of waste activated sludge for high-efficiency methanogenesis: Establishing direct interspecies electron transfer via ethanol-type fermentation [J]. Renew. Energ., 2020, 148: 523
[17] Táncsics A, Farkas M, Szoboszlay S, et al. One-year monitoring of meta-cleavage dioxygenase gene expression and microbial community dynamics reveals the relevance of subfamily I.2.C extradiol dioxygenases in hypoxic, BTEX-contaminated groundwater [J]. Syst. Appl. Microbiol., 2013, 36: 339
doi: 10.1016/j.syapm.2013.03.008 pmid: 23706914
[18] Nair H P, Puthusseri R M, Vincent H, et al. 16S rDNA-based bacterial diversity analysis of Arabian Sea sediments: A metagenomic approach [J]. Ecolog. Genet. Genomic., 2017, 3: 47
[19] Gittel A, Kofoed M V W, Sørensen K B, et al. Succession of Deferribacteres and Epsilonproteobacteria through a nitrate-treated high-temperature oil production facility [J]. Syst. Appl. Microbiol, 2012, 35: 165
doi: 10.1016/j.syapm.2012.01.003 pmid: 22381470
[20] Slobodkin A, Campbell B, Cary S C, et al. Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in deep-sea hydrothermal vents at 13°N (East Pacific Rise) [J]. FEMS Microbiol. Ecol., 2001, 36: 235
doi: 10.1111/j.1574-6941.2001.tb00844.x pmid: 11451528
[21] Slobodkina G B, Kolganova T V, Chernyh N A, et al. Deferribacter autotrophicus sp. nov., an iron (III)-reducing bacterium from a deep-sea hydrothermal vent [J]. Int. J. Syst. Evol. Microbiol., 2009, 59: 1508
doi: 10.1099/ijs.0.006767-0 pmid: 19502344
[22] Lin T J, Breves E A, Dyar M D, et al. Magnetite formation from ferrihydrite by hyperthermophilic archaea from Endeavour Segment, Juan de Fuca Ridge hydrothermal vent chimneys [J]. Geobiology, 2014, 12: 200
doi: 10.1111/gbi.12083 pmid: 24612368
[23] Slobodkina G B, Kolganova T V, Querellou J, et al. Geoglobus acetivorans sp. nov., an iron (III)-reducing archaeon from a deep-sea hydrothermal vent [J]. Int. J. Syst. Evol. Microbiol., 2009, 59: 2880
doi: 10.1099/ijs.0.011080-0 pmid: 19628601
[24] He J Z, Qu D, Zhang L L. DissImilatory Fe(III) reduction by microorganisms [J]. Microbiol. Chin., 2006, 33(5): 158
[24] (贺江舟, 曲东, 张莉利. Fe(III) 的微生物异化还原 [J]. 微生物学通报, 2006, 33(5): 158)
[25] Smith J A, Aklujkar M, Risso C, et al. Mechanisms involved in Fe(III) respiration by the hyperthermophilic archaeon Ferroglobus placidus [J]. Appl. Environ. Microbiol., 2015, 81: 2735
[26] Herrera L K, Videla H A. Role of iron-reducing bacteria in corrosion and protection of carbon steel [J]. Int. Biodeterior. Biodegrad., 2009, 63: 891
[27] Niu Y, Lin Z L, Lin G J, et al. Research on corrosion behavior of Q235 steel in marine iron-oxidizing bacteria [J]. Marin. Environ. Sci., 2014, 33: 739
[27] (牛艳, 林振龙, 林国基等. Q235钢在海洋铁细菌作用下的腐蚀行为研究 [J]. 海洋环境科学, 2014, 33: 739)
[28] Chen R, Liu H, Tong M, et al. Impact of Fe(II) oxidation in the presence of iron-reducing bacteria on subsequent Fe(III) bio-reduction [J]. Sci. Total Environ., 2018, 639: 1007
[29] Vecchia E D, Suvorova E I, Maillard J, et al. Fe(III) reduction during pyruvate fermentation by Desulfotomaculum reducens strain MI-1 [J]. Geobiology, 2014, 12: 48
pmid: 24279507
[30] Lehours A C, Rabiet M, Morel-Desrosiers N, et al. Ferric iron reduction by fermentative strain BS2 isolated from an iron-rich anoxic environment (Lake Pavin, France) [J]. Geomicrobiol. J., 2010, 27: 714
[31] Weber K A, Achenbach L A, Coates J D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction [J]. Nat. Rev. Microbiol., 2006, 4: 752
doi: 10.1038/nrmicro1490 pmid: 16980937
[32] Nevin K P, Lovley D R. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens [J]. Appl. Environ. Microbiol., 2000, 66: 2248
doi: 10.1128/aem.66.5.2248-2251.2000 pmid: 10788411
[33] Burns J L, Ginn B R, Bates D J, et al. Outer membrane-associated serine protease involved in adhesion of Shewanella oneidensis to Fe(Ⅲ) oxides [J]. Environ. Sci. Technol., 2010, 44: 68
[34] Marsili E, Baron D B, Shikhare I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer [J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 3968
doi: 10.1073/pnas.0710525105 pmid: 18316736
[35] Gu T Y, Jia R, Unsal T, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35: 631
[36] Little B, Ray R. A perspective on corrosion inhibition by biofilms [J]. Corrosion, 2002, 58: 424
[37] Videla H A, Herrera L K. Understanding microbial inhibition of corrosion. A comprehensive overview [J]. Int. Biodeterior. Biodegrad., 2009, 63: 896
[38] Obuekwe C O, Westlake D W S, Plambeck J A, et al. Corrosion of mild steel in cultures of ferric iron reducing bacterium isolated from crude oil i. polarization characteristics [J]. Corrosion, 1981, 37: 461
[39] Little B, Wagner P, Hart K, et al. The role of biomineralization in microbiologically influenced corrosion [J]. Biodegradation, 1998, 9: 1
doi: 10.1023/a:1008264313065 pmid: 9807800
[40] Chen S Q, Zhang D. Corrosion behavior of Q235 carbon steel in air-saturated seawater containing Thalassospira sp. [J]. Corros. Sci., 2019, 148: 71
[41] Moreira R, Schutz M K, Libert M, et al. Influence of hydrogen-oxidizing bacteria on the corrosion of low carbon steel: Local electrochemical investigations [J]. Bioelectrochemistry, 2014, 97: 69
doi: 10.1016/j.bioelechem.2013.10.003 pmid: 24177135
[42] Esnault L, Jullien M, Mustin C, et al. Metallic corrosion processes reactivation sustained by iron-reducing bacteria: Implication on long-term stability of protective layers [J]. Phys. Chem. Earth, 2011, 36: 1624
[43] Dubiel M, Hsu C H, Chien C C, et al. Microbial iron respiration can protect steel from corrosion [J]. Appl. Environ. Microbiol., 2002, 68: 1440
pmid: 11872499
[44] Cote C, Rosas O, Basseguy R. Geobacter sulfurreducens: An iron reducing bacterium that can protect carbon steel against corrosion? [J]. Corros. Sci., 2015, 94: 104
doi: 10.1016/j.corsci.2015.01.044
[45] Volkland H P, Harms H, Kaufmann K, et al. Repair of damaged vivianite coatings on mild steel using bacteria [J]. Corros. Sci., 2001, 43: 2135
doi: 10.1016/S0010-938X(01)00004-X
[46] Sun H F, Shi B Y, Lytle D A, et al. Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system [J]. Environ. Sci.-Process Impacts, 2014, 16: 576
doi: 10.1039/c3em00544e pmid: 24509822
[47] Wang H B, Hu C, Hu X X, et al. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system [J]. Water Res., 2012, 46: 1070
doi: 10.1016/j.watres.2011.12.001
[48] Yan B Z, Wrenn B A, Basak S, et al. Microbial reduction of Fe(III) in hematite nanoparticles by Geobacter sulfurreducens [J]. Environ. Sci. Technol., 2008, 42: 6526
doi: 10.1021/es800620f pmid: 18800525
[49] Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria [J]. Corros. Sci., 2017, 114: 102
doi: 10.1016/j.corsci.2016.10.025
[50] Wang H B, Hu C, Zhang L L, et al. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems [J]. Water Res., 2014, 65: 362
doi: 10.1016/j.watres.2014.07.042
[51] Li X X, Wang H B, Hu X X, et al. Characteristics of corrosion sales and biofilm in aged pipe distribution systems with switching water source [J]. Eng. Fail. Anal., 2016, 60: 166
[52] Wang H B, Hu C, Li X X. Characterization of biofilm bacterial communities and cast iron corrosion in bench-scale reactors with chloraminated drinking water [J]. Eng. Fail. Anal., 2015, 57: 423
[53] Lee J S, McBeth J M, Ray R I, et al. Iron cycling at corroding carbon steel surfaces [J]. Biofouling, 2013, 29: 1243
doi: 10.1080/08927014.2013.836184 pmid: 24093730
[54] Chen S Q, Deng H, Liu G Z, et al. Corrosion of Q235 carbon steel in seawater containing mariprofundus ferrooxydans and Thalassospira sp. [J]. Front. Microbiol., 2019, 10: 936
doi: 10.3389/fmicb.2019.00936 pmid: 31134004
[55] Black E, Owens K, Staub R, et al. Evaluation of AISI Type 304 stainless steel as a suitable surface material for evaluating the efficacy of peracetic acid-based disinfectants against Clostridium difficile spores [J]. PLoS One, 2017, 12: e0187074
[56] Mouanga M, Puiggali M, Tribollet B, et al. Galvanic corrosion between zinc and carbon steel investigated by local electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2013, 88: 6
[57] Wang X, Huang J Z, Li L. Advances in gene knockout techniques in microbiology [J]. J. Microbiol., 2019, 39(4): 100
[57] (王雪, 黄健中, 李力. 基因敲除技术在微生物中的应用 [J]. 微生物学杂志, 2019, 39(4): 100)
[58] Summers Z M, Fogarty H E, Leang C, et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria [J]. Science, 2010, 330: 1413
doi: 10.1126/science.1196526 pmid: 21127257
[59] Liu F H, Rotaru A E, Shrestha P M, et al. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange [J]. Environ. Microbiol., 2015, 17: 648
doi: 10.1111/1462-2920.12485 pmid: 24725505
[60] Huang L Y, Huang Y, Lou Y T, et al. Pyocyanin-modifying genes phzM and phzS regulated the extracellular electron transfer in microbiologically-influenced corrosion of X80 carbon steel by Pseudomonas aeruginosa [J]. Corros. Sci., 2019, 164: 108355
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[5] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[6] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[7] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[8] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[9] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[10] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[11] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[12] 陈菊娜,吴佳佳,王鹏,张盾. 脱硫弧菌和溶藻弧菌对船体结构材料907钢海水腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[13] 刘宏伟,刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[14] 吕亚林,郑碧娟,刘宏伟,熊福平,刘宏芳,胡裕龙. 磁场对硫酸盐还原菌生物膜在304不锈钢表面吸附性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[15] 张建春,蒋金洋,李阳,施锦杰,左龙飞,王丹芊,麻晗. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.