Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (3): 230-236    DOI: 10.11902/1005.4537.2019.056
  研究报告 本期目录 | 过刊浏览 |
X65管线钢在油水两相界面处的CO2腐蚀行为研究
贾巧燕1, 王贝1, 王赟1, 张雷1(), 王清2, 姚海元2, 李清平2, 路民旭1
1 北京科技大学 新材料技术研究院 北京 100083
2 中海油研究总院 北京 100028
Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment
JIA Qiaoyan1, WANG Bei1, WANG Yun1, ZHANG Lei1(), WANG Qing2, YAO Haiyuan2, LI Qingping2, LU Minxu1
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 China National Offshore Oil Corporation Research Institute, Beijing 100028, China
全文: PDF(4796 KB)   HTML
摘要: 

利用失重法、电化学极化法、电化学阻抗谱及腐蚀形貌观察和腐蚀产物物相分析,研究了油水分层介质中X65管线钢在油水两相界面处的腐蚀行为及不同缓蚀剂在油水界面处的作用效果。结果表明,在CO2分压为0.9 MPa,温度为60 ℃,静止状态下的油水分层介质中,X65钢在油相区几乎不发生腐蚀,在油水两相界面处发生局部腐蚀,在水相区发生严重腐蚀。添加水溶性缓蚀剂十七烯基胺乙基咪唑啉季铵盐使得X65钢在该工况下的腐蚀速率降低,添加油溶性缓蚀剂癸硫醇反而使得X65钢在油水两相界面处的局部腐蚀加重,甚至出现了腐蚀沟槽。

关键词 油水界面电化学CO2腐蚀缓蚀剂    
Abstract

The corrosion behavior of X65 pipeline steel at oil-water interface region in hyperbaric CO2 environment was studied by means of weight loss method, polarization curve, electrochemical impedance spectroscopy and other electrochemical analysis techniques, as well as corrosion morphology observation and corrosion products analysis. The results revealed that the X65 steel had little corrosion in the oil phase, local corrosion occurred at the interface region between oil and water, severe corrosion occurred in the aqueous region, where the oil-water stratified medium was under stationary state with CO2 partial pressure of 0.9 MPa at 60 ℃. The addition of seventeen alkenyl amide ethyl imidazoline quaternary ammonium salt, which is water soluble rust inhibitor, could reduced the corrosion rate of X65 steel under this condition, while the addition of the decyl mercaptan, which is oil soluble rust inhibitor, could aggravated the local corrosion of X65 steel at the oil-water interface, whilst, groove corrosion was observed at the oil-water interface.

Key wordsoil-water interface    electrochemical method    CO2 corrosion    corrosion inhibitor
收稿日期: 2019-05-10     
ZTFLH:  TG172.9  
基金资助:国家科技重大专项(2016ZX05028-004)
通讯作者: 张雷     E-mail: zhanglei@ustb.edu.cn
Corresponding author: ZHANG Lei     E-mail: zhanglei@ustb.edu.cn
作者简介: 贾巧燕,女,1992年生,硕士

引用本文:

贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
Qiaoyan JIA, Bei WANG, Yun WANG, Lei ZHANG, Qing WANG, Haiyuan YAO, Qingping LI, Minxu LU. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 230-236.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.056      或      https://www.jcscp.org/CN/Y2020/V40/I3/230

图1  十七烯基胺乙基咪唑啉季铵盐和癸硫醇的结构
图2  X65钢在不同腐蚀介质中的腐蚀速率
图3  X65钢在不同介质中浸泡3 d后的宏观腐蚀形貌
图4  X65钢在加入100 mg/L癸硫醇的油水两相界面区域腐蚀沟槽形貌
图5  X65钢表面不同区域的微观形貌
图6  X65钢在水相中的腐蚀产物膜XRD谱
图7  X65钢在加入不同缓蚀剂的油水分层介质中的电化学测试结果
图8  X65钢在加入不同缓蚀剂的油水分层介质中的电化学阻抗谱
图9  EIS等效电路图
ConditionRs / Ω·cm2CPEfilmRf / Ω·cm2CPEdlRct / Ω·cm2RL / Ω·cm2L / H
Varietyt / hY1 / S·sn1·cm-2n1Y2 / S·sn2·cm-2n2
Blank14.005767.10.77828.3046401.00019.0958.367.363
34.57519010.86117.25117101.0007.53452.775.754
54.54727230.86813.99136101.0006.88444.385.451
74.61948170.85911.47166101.0006.95836.315.549
94.92150610.9628.265342401.0004.150------
114.80859080.9827.948449201.0004.112------
10SH14.93411300.62737.99643601.0005.76476.5970.98
34.972103300.65921.53540201.0006.4562.2341.10
54.96496940.70618.70645101.0006.88444.385.451
74.97892760.76615.42627701.0006.49761.3534.68
95.03996630.78214.34737200.96311.0861.4935.19
114.96690950.82513.73594501.0007.24463.4241.26
OAI1571.7---------1.560.593947.8------
3398.6---------1.500.592864------
514.81---------2.680.8779.7246735.7
713.58---------4.440.8529.71128328.6
95.423127.10.52018.813.490.596686.41278426.8
115.51118.80.52319.013.340.606680.71238519.2
表1  等效电路各参数值
图10  EIS拟合结果所得Rp值
[1] Wang H W, Hong T, Cai J Y, et al. Enhanced mass transfer and wall shear stress in multiphase slug flow [A]. Corrosion 2002 [C]. Houston, TX, 2002
[2] Lu M X, Bai Z Q, Zhao X W, et al. Actuality and typical cases for corrosion in the process of extraction, gathering, storgage and transmission for oil and gas [J]. Corros. Prot., 2002, 23: 105
[2] (路民旭, 白真权, 赵新伟等. 油气采集储运中的腐蚀现状及典型案例 [J]. 腐蚀与防护, 2002, 23: 105)
[3] Palacios C A, Shadley J R. CO2 corrosion of N-80 steel at 71 ℃ in a two-phase flow system [J]. Corrosion, 1993, 49: 686
doi: 10.5006/1.3316101
[4] Kang C, Gopal M, Jepson W P. Localized corrosion in multiphase pipelines [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
[5] Li Z L, Cheng Y P, Bi H S, et al. Research progress of CO2/H2S corrosion and inhibitor techniques in oil and gas fields [J]. CIESC J., 2014, 65: 406
[5] (李自力, 程远鹏, 毕海胜等. 油气田CO2/H2S共存腐蚀与缓蚀技术研究进展 [J]. 化工学报, 2014, 65: 406)
doi: 10.3969/j.issn.0438-1157.2014.02.006
[6] Nesic S, Cai J Y, Wang S H, et al. Integrated CO2 corrosion-multiphase flow model [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
[7] Zhang J X, Kang J, Fan J C, et al. Study on erosion wear of fracturing pipeline under the action of multiphase flow in oil & gas industry [J]. J. Nat. Gas Sci. Eng., 2016, 32: 334
doi: 10.1016/j.jngse.2016.04.056
[8] Nešić S, Lee K L J. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—Part 3: Film growth model [J]. Corrosion, 2003, 59: 616
doi: 10.5006/1.3277592
[9] Cheng Y P, Bai Y, Li Z L, et al. Corrosion characteristics of X65 steel in CO2/oil/water environment of gathering pipeline [J]. Chin. J. Eng., 2018, 40: 594
[9] (程远鹏, 白羽, 李自力等. 集输管道CO2/油/水环境中X65钢的腐蚀特征 [J]. 工程科学学报, 2018, 40: 594)
[10] Goyal M, Kumar S, Bahadur I, et al. Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review [J]. J. Mol. Liq., 2018, 256: 565
doi: 10.1016/j.molliq.2018.02.045
[11] Choi H, Tonsuwannarat T. Unique roles of hydrocarbons in flow-Induced sweet Corrosion of X-52 carbon steel in wet gas condensate producing wells [A]. Corrosion 2002 [C]. Denver, Colorado, 2002
[12] Choi H J. Effect of liquid hydrocarbons on flow-induced sweet corrosion of carbon steel [A]. Corrosion 2004 [C]. New Orleans, Louisiana, 2004
[13] Liu X W, Zheng J S. Effects of a small amount of diesel fuel oil on corrosion of carbon steel in brine medium [J]. Mater. Prot., 1999, 32(1): 1
[13] (刘小武, 郑家燊. 少量柴油对盐水介质中碳钢腐蚀的影响 [J]. 材料保护, 1999, 32(1): 1)
[14] Liu X W, Peng F M, Yu D Y, et al. Corrosion inhibitor for oil pipeline [J]. Mater. Prot., 2000, 33(8): 3
[14] (刘小武, 彭芳明, 俞敦义等. 输油管线缓蚀剂的研究 [J]. 材料保护, 2000, 33(8): 3)
[15] Zhao J M, Li Y L, Gu F, et al. Influence of crude oil on inhibition performance of corrosion inhibitors in H2S/CO2 containing brines [J]. Corros. Sci. Prot. Technol., 2016, 28: 423
[15] (赵景茂, 李玉龙, 谷丰等. H2S/CO2腐蚀环境中原油对缓蚀剂缓蚀性能的影响 [J]. 腐蚀科学与防护技术, 2016, 28: 423)
doi: 10.11903/1002.6495.2015.402
[16] Liu L W, Zhao X R, Hu Q. Study on corrosion inhibiting efficiency of imidazoline corrosion inhibitor in oil-water coexistence condition [J]. Oil-Gasfield Surf. Eng., 2001, 20(1): 25
[16] (刘烈炜, 赵小蓉, 胡倩. 油水两相共存下咪唑啉缓蚀剂的缓蚀效率 [J]. 油气田地面工程, 2001, 20(1): 25)
[17] Li C, Richter S, Nešić S. Effect of corrosion inhibitor on water wetting & CO2 corrosion in an oil-water two phase system [Z]. Athens: Ohio University, 2009
[18] Seal S, Jepson W P, Gopal M, et al. Surface chemical and morphological changes in corrosion product layers and inhibitors in CO2 corrosion in multiphase flowlines [A]. Corrosion 2000 [C]. Orlando, Florida, 2000
[19] Heuer J K, Stubbins J F. Microstructure analysis of coupons exposed to carbon dioxide corrosion in multiphase flow [J]. Corrosion, 1998, 54: 566
doi: 10.5006/1.3284885
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[5] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[6] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[7] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[8] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[9] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[10] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[11] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[12] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[13] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[14] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[15] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.