Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (4): 341-346    DOI: 10.11902/1005.4537.2017.118
  研究报告 本期目录 | 过刊浏览 |
破损涂层下管线钢的交流电干扰腐蚀行为
王晓霖1, 闫茂成2(), 舒韵2, 孙成2, 柯伟2
1 中国石油化工股份有限公司抚顺石油化工研究院 抚顺 113001
2 中国科学院金属研究所材料环境腐蚀研究中心 国家金属腐蚀控制工程技术研究中心 沈阳 110016
AC Interference Corrosion of Pipeline Steel Beneath Delaminated Coating with Holiday
Xiaolin WANG1, Maocheng YAN2(), Yun SHU2, Cheng SUN2, Wei KE2
1 Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC, Fushun 113001, China
2 National Engineering Research Center for Corrosion Control, Environment Corrosion Center, Instituteof Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(5294 KB)   HTML
摘要: 

构建了带破损点的剥离涂层管道腐蚀模拟实验装置,采用微电极技术研究交流干扰X80管线钢破损/剥离涂层下局部腐蚀行为及规律。结果表明:交流电干扰使涂层破损管线钢电位负向偏移;随交流电密度增大,X80钢的阳极溶解速率增大,腐蚀形态由均匀腐蚀逐渐向局部腐蚀转变;破损点处管线钢发生严重腐蚀,剥离区腐蚀程度稍有减缓;但施加100 A/m2交流电时,剥离区深处X80钢表面仍出现了较严重的点蚀坑。从交流干扰的整流效应、阳极反应不可逆性及交流电对钢/环境界面双电层结构影响等角度讨论了交流电干扰对涂层破损下管线钢腐蚀行为的影响。

关键词 管道钢杂散电流防腐层阴极保护电干扰    
Abstract

AC interference corrosion of X80 pipeline steel beneath a delaminated coating with an artificial damage is investigated via a simulated crevice cell by means of microelectrode technique in artificial neutral soil solution NS4. The results show that the applied AC interference may induce the negative shift of the free corrosion potential of X80 steel. With the increase of AC current density, the anodic dissolution rate of X80 steel increases, while the corrosion pattern changes from uniform corrosion to local corrosion. The corrosion of pipeline steel just on the damaged spot is the most serious, however, the corrosion attack of the steel beneath the delaminated coating around the damaged spot is slightly alleviated. When the AC interference current density increases up to 100 A/m2, serious pitting corrosion appears on X80 steel surface, where locates even far from the damaged spot beneath the delaminated coating. The influence of AC interference on the corrosion behavior of pipeline steel beneath the damaged coating was discussed from aspects of the rectification effect of the AC interference, the irreversibility of anode reaction and the effect of AC on the double layer structure at the interface steel/solution.

Key wordspipeline steel    AC interference    coating    cathodic protection    electrical interference
收稿日期: 2017-07-20     
ZTFLH:  TG172.9  
基金资助:资助项目 国家自然科学基金重点项目 (51471176) 和国家材料环境腐蚀平台 (2005DKA10400)
作者简介:

作者简介 王晓霖,男,1977年生,博士,高级工程师

引用本文:

王晓霖, 闫茂成, 舒韵, 孙成, 柯伟. 破损涂层下管线钢的交流电干扰腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
Xiaolin WANG, Maocheng YAN, Yun SHU, Cheng SUN, Wei KE. AC Interference Corrosion of Pipeline Steel Beneath Delaminated Coating with Holiday. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 341-346.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.118      或      https://www.jcscp.org/CN/Y2017/V37/I4/341

图1  交流干扰管线钢剥离涂层下腐蚀模拟实验装置示意图
图2  涂层破损管线钢交流干扰施加及测试示意图
图3  不同电流密度交流干扰下X80管线钢的腐蚀电位随时间的变化规律
图4  交流干扰电流密度分别为20和100 A/m2时剥离涂层下X80钢局部电位随时间的变化
图5  交流干扰电流密度分别为20和100 A/m2时破损防腐层下X80钢局部电位分布
图6  交流电流密度为20 A/m2干扰下涂层破损点及剥离区不同位置X80钢试样实验72 h后表面腐蚀产物形貌
图7  不同交流电流密度干扰下涂层破损点及剥离区不同位置X80钢试样腐蚀72 h后的表面腐蚀产物和腐蚀形貌
[1] Hu S X, Lu M X, Du Y X, et al.New opinions about the AC corrosion of pipelines[J]. Corros. Prot., 2010, 31: 419(胡士信, 路民旭, 杜艳霞等. 管道交流腐蚀的新观点[J]. 腐蚀与防护, 2010, 31: 419)
[2] Li Z L, Sun Y F, Chen S K, et al.Influence of alternating current electrified railway stray current on buried pipelines[J]. Corros. Prot., 2011, 32: 177(李自力, 孙云峰, 陈绍凯等. 交流电气化铁路杂散电流对埋地管道电位影响规律[J]. 腐蚀与防护, 2011, 32: 177)
[3] Wang X H, Liu J Y, He R Y, et al.Disturbed corrosion of buried gas pipe-lines induced by rail traffic dynamic stray current[J]. Corros. Prot., 2010, 31: 193(王新华, 刘菊银, 何仁洋等. 轨道交通动态杂散电流对埋地管道的干扰腐蚀试验[J]. 腐蚀与防护, 2010, 31: 193)
[4] Hanson H R, Smart J.AC corrosion on a pipeline located in a HVAC utility corridor [A]. Corrosion 2004[C]. Houston, TX: NACEInternational, 2004
[5] Yan M C, Yang S, Xu J, et al.Stress corrosion cracking of X80 pipeline steel at coating defect in acidic soil[J]. Acta Metall. Sin., 2016, 52: 1133(闫茂成, 杨霜, 许进等. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为[J]. 金属学报, 2016, 52: 1133)
[6] Zhao J, Luo P, Teng Y P, et al.Survey and analysis of field application of 3PE pipeline coating[J]. Pipeline Tech. Equip., 2008, (6): 41(赵君, 罗鹏, 滕延平等. 管道三层PE防腐层现场应用调查与分析[J]. 管道技术与设备, 2008, (6): 41)
[7] Bosch R W, Bogaerts W F.A theoretical study of AC-induced corrosion considering diffusion phenomena[J]. Corros. Sci., 1998, 40: 323
[8] Weng Y J, Wang N.Carbon steel corrosion induced by alternating current[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 270(翁永基, 王宁. 碳钢交流电腐蚀机理的探讨[J]. 中国腐蚀与防护学报, 2011, 31: 270)
[9] Wan H X, Song D D, Liu Z Y, et al.Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment[J]. Acta Metall. Sin., 2017, 53: 575(万红霞, 宋东东, 刘智勇等. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53: 575)
[10] Fu A Q, Cheng Y F.Effects of alternating current on corrosion of a coated pipeline steel in a chloride-containing carbonate/bicarbonate solution[J]. Corros. Sci., 2010, 52: 612
[11] Lalvani S B, Lin X.A revised model for predicting corrosion of materials induced by alternating voltages[J]. Corros. Sci., 1996, 38: 1709
[12] Goidanich S, Lazzari L, Ormellese M.AC corrosion. Part 2: parameters influencing corrosion rate[J]. Corros. Sci., 2010, 52: 916
[13] Jiang Z T, Du Y X, Dong L, et al.Effect of ac current on corrosion potential of Q235 steel[J]. Acta Metall. Sin., 2011, 47: 997(姜子涛, 杜艳霞, 董亮等. 交流电对Q235钢腐蚀电位的影响规律研究[J]. 金属学报, 2011, 47: 997)
[14] Yang Y, Li Z L, Wen C.Effects of alternating current on X70 steel morphology and electrochemical behavior[J]. Acta Metall. Sin., 2013, 49: 43(杨燕, 李自力, 文闯. 交流电对X70钢表面形态及电化学行为的影响[J]. 金属学报, 2013, 49: 43)
[15] Wakelin R G, Sheldon C.Investigation and mitigation of AC corrosion on a 300 MM natural gas pipeline [A]. Corrosion 2004[C]. New Orleans, Louisiana: NACE International, 2004
[16] Yan M C, Wang J Q, Ke W, et al.Effectiveness of cathodic protection under simulated disbonded coating on pipelines[J]. J. Chin. Soc. Corros. Prot., 2007, 27: 257(闫茂成, 王俭秋, 柯伟等. 埋地管线剥离覆盖层下阴极保护的有效性[J]. 中国腐蚀与防护学报, 2007, 27: 257)
[17] Yan M C, Wang J Q, Han E-H, et al.Local environment under simulated disbonded coating on steel pipelines in soil solution[J]. Corros. Sci., 2008, 50: 1331
[18] McCollum B, Ahlborn G H. The influence of frequency of alternating or infrequently reversed current on electrolytic corrosion[J]. J. Franklin Inst., 1916, 182: 108
[1] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[2] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[3] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[4] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[5] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[6] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[7] 邱萍, 杨连捷, 宋玉, 杨鸿飞. 添加DMF对TiO2薄膜光生阴极保护性能影响研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[8] 寇杰, 张新策, 崔淦, 杨宝安. 储罐底板阴极保护电位分布研究进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
[9] 王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[10] 杨霜,唐囡,闫茂成,赵康文,孙成,许进,于长坤. 温度对X80管线钢酸性红壤腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 227-232.
[11] 刘在健,王佳,张彭辉,王燕华,张源. 5083铝合金在海水中的腐蚀行为及其阴极保护研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 239-244.
[12] 许洪梅, 柳伟, 曹立新, 苏革, 高荣杰. 304不锈钢表面ZnO/TiO2复合薄膜的制备与光生阴极防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
[13] 范丰钦, 宋积文, 李成杰, 杜敏. 海水流速对DH36平台钢阴极保护的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.
[14] 么惠平, 闫茂成, 杨旭, 孙成. X80管线钢红壤腐蚀初期电化学行为[J]. 中国腐蚀与防护学报, 2014, 34(5): 472-476.
[15] 邱景, 杜敏, 陆原, 张颖, 郭海军, 李成杰. X65碳钢在模拟油田采出水中的阴极保护研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 333-338.