Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (6): 550-557    DOI: 10.11902/1005.4537.2013.183
  本期目录 | 过刊浏览 |
海水流速对DH36平台钢阴极保护的影响
范丰钦1, 宋积文2, 李成杰1, 杜敏1()
1. 中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100
2. 中海油能源发展股份有限公司北京分公司信息技术发展中心 北京 100027
Effect of Flow Velocity on Cathodic Protection of DH36 Steel in Seawater
FAN Fengqin1, SONG Jiwen2, LI Chengjie1, DU Min1()
1. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2. CNOOC Energy Technology & Services Limited Beijing Branch Information Technology Development Center, Beijing 100027, China
全文: PDF(3704 KB)   HTML
摘要: 

利用自行设计的管流式海水循环实验装置模拟在0.20~2.00 m/s流速范围内的阴极保护情况,采用恒电流极化法进行阴极保护,通过电位的变化、电极宏观形貌和钙质沉积层的生成情况评价阴极保护效果。结果表明,流速越大,电位达到保护电位-800 mV (vs Ag/AgCl海水) 时所需的电流密度越大;而且当流速大于1.20 m/s时,即使电位达到了保护电位仍可能发生明显的冲刷腐蚀;生成的钙质沉积层主要是单层的富镁层,只有电流密度较大时,才会在富镁层上进一步沉积富钙层。

关键词 阴极保护海水流速保护电流密度钙质沉积层恒电流极化    
Abstract

A series of cathodic polarization experiments for DH36 steel has been performed with seawater flow in a range of flow velocities: 0.20, 0.40, 0.60, 0.80, 1.00, 1.20, 1.40 and 2.00 m/s in a pipe flow circulating seawater device. For each flow velocity, at least three different polarization current densities were chosen to perform galvanostatic cathodic polarization for 7 d. The results showed that the current density demand for an adequate cathodic protection (CP) increased with the flow velocity; the potential could be also polarized to achieve -800 mV vs the silver/silver chloride (seawater) reference electrode (Ag/AgCl [sw]) when the velocity was up to 1.00 m/s; however when the velocity was above 1.20 m/s, erosion-corrosion probably could occur even the polarization potential has achieved the protective potential; the calcareous deposits formed on the steel surface were most single magnesium-rich layers. Exceptionally, calcium-rich deposits could form on top of the magnesium-rich layer only when a very high current density was applied.

Key wordscathodic protection    flow velocity    protection current density    calcareous deposit    galvanostatic polarization
    
ZTFLH:  TG174.3  
作者简介: null

范丰钦,男,1989年生,硕士生,研究方向为金属腐蚀与防护

引用本文:

范丰钦, 宋积文, 李成杰, 杜敏. 海水流速对DH36平台钢阴极保护的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.
Fengqin FAN, Jiwen SONG, Chengjie LI, Min DU. Effect of Flow Velocity on Cathodic Protection of DH36 Steel in Seawater. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 550-557.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.183      或      https://www.jcscp.org/CN/Y2014/V34/I6/550

图1  实验装置示意图
图2  三电极实验单元示意图
图3  不同流速和不同电流密度下电位随时间的变化曲线
Current density
mA/m2
Potential / mV
0.20 m/s 0.40 m/s 0.60 m/s 0.80 m/s
300 -718 -703 --- ---
400 -879 -794 -777 -735
600 -1000 -976 -909 -942
800 -1120 -1160 -1004 -976
1000 --- --- -1025 -1008
表1  不同流速和不同电流密度条件下阴极极化7 d后的电极电位值
图4  试片在不同流速和不同电流密度条件下极化7 d后的表面宏观形貌
图5  流速为0.20 m/s时不同电流密度下沉积层的SEM像
图6  800 mA/m2条件下试片表面的EDX结果
Current density mA/m2 C O Mg Ca Fe
400 19.49 34.37 9.14 0.06 37.64
600 11.45 51.25 17.49 0.09 19.73
800 (inner layer) 9.87 66.65 21.66 0.72 1.10
800 (outer layer) 21.04 66.54 0.47 11.96 0.00
表2  流速为0.20 m/s时不同电流密度条件下沉积层中各元素的含量
[1] Fischer K P, Espelid B, Schei B. A review of CP current demand and anode performance for deep water [A]. Corrosion/01 [C]. Houston: NACE, 2001: 01013
[2] Tawns A, Oakley R. Cathodic protection at a simulated depth of 2500 m [A]. Corrosion/00 [C]. Houston: NACE, 2000: 134
[3] Fischer K P. Deep water: considerations of the cathodic protection design basis [A]. OTC/99 [C]. Houston, 1999: 11057
[4] Li C J, Du M. Research and development of cathodic protection for steel materials in deep seawater[J]. J. Chin. Soc. Corros. Prot., 2013, 33(1): 10-15
[4] (李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展[J]. 中国腐蚀与防护学报, 2013, 33(1): 10-15)
[5] Hack H P, Guanti R J. Effect of high flow on calcareous deposits and cathodic protection current density [A]. Corrosion/88 [C]. Houston: NACE, 1988: 38
[6] Fischer K P, Finnegan J E. Calcareous Deposits: Calcium and Magnesium Ion concentration [A]. Corrosion/89 [C]. Houston: NACE, 1989: 581
[7] Hugus D, Hartt W H. Effect of velocity on current density for cathodically polarized steel in seawater [A]. Corrosion/98 [C]. San Diego: NACE, 1998: 726
[8] Lin Y Z. The development of erosion corrosion research under flow conditions[J]. Total Corros. Control, 1996, 10(4): 1-3
[8] (林玉珍. 流动条件下磨损腐蚀的研究进展[J]. 全面腐蚀控制,1996, 10(4): 1-3)
[9] Zheng F Y, Wen G M, Fang B F, et al. The effect of cathodic polarization mode on the formation of calcareous deposit[J]. Corros. Prot., 1995, 15(6): 252-256
[9] (郑辅养, 温国谋, 方炳福等. 阴极极化模式对钙质沉积层形成的影响[J]. 腐蚀与防护, 1995, 15(6): 252-256)
[10] Yong X Y, Xu R F, Li H W, et al. The electrochemical behavior of carbon steel electrode in flowing 3.5% NaCl solution[J]. Corros. Sci. Prot. Technol., 1998, 10(2): 87-92
[10] (雍兴跃, 徐瑞芬, 李焕文等. 碳钢电极在流动3.5%氯化钠溶液中的电化学行为[J]. 腐蚀科学与防护技术, 1998, 10(2): 87-92)
[11] Tang X, Wang J, Li Y. Effect of flow velocity of seawater on corrosion rate for A3 steel[J]. Marine Sci., 2005, 29(7): 26-29
[11] (唐晓, 王佳, 李艳. 海水流动对A3钢腐蚀速度的影响[J]. 海洋科学, 2005, 29(7): 26-29)
[12] Zhu Y X, Zhu X C, Ge Y, et al. Study on corrosion behavior of steel in flowing freshwater[J]. Hydro-Sci. Eng. 2002, 23(2): 7-11
[12] (朱雅仙, 朱锡昶, 葛燕等. 流动淡水中钢的腐蚀行为研究[J]. 水利水运工程学报, 2002, 23(2): 7-11)
[13] Lin Z N, Ma H T, Wang L, et al. The electrochemical corrosion behavior of iron in flowing seawater[J]. Mater. Prot., 2009, 42(7): 14-16
[13] (林中楠, 马海涛, 王来等. 纯铁在流动海水中的电化学腐蚀行为[J]. 材料保护, 2009, 42(7): 14-16)
[14] Hartt W H, Lin N K. An evaluation of calcareous deposits as effected by sea water movements [A]. 6th ASME International Conference on Offshore Mechanics & Arctic Engineering Int. Sym. Proc [C]. Houston, 1987, 3: 425-430
[15] Li C J, Du M, Li Y, et al. The influences of protection potentials on the formation of calcareous deposits in dynamic seawater[J]. Period. Ocean Univ. China, 2011, 41(7/8): 149-153
[15] (李成杰, 杜敏, 李妍等. 动态海水中保护电位对钙质沉积层形成的影响[J]. 中国海洋大学学报, 2011, 41(7/8): 149-153)
[16] Thomason W H. Cathodic protection of steel structures in deep water: A review [A]. OTC/91 [C]. Houston, 1999: 6588
[1] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[3] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[4] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[5] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[6] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[7] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[8] 邱萍, 杨连捷, 宋玉, 杨鸿飞. 添加DMF对TiO2薄膜光生阴极保护性能影响研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[9] 寇杰, 张新策, 崔淦, 杨宝安. 储罐底板阴极保护电位分布研究进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
[10] 王晓霖, 闫茂成, 舒韵, 孙成, 柯伟. 破损涂层下管线钢的交流电干扰腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[11] 王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[12] 杨霜,唐囡,闫茂成,赵康文,孙成,许进,于长坤. 温度对X80管线钢酸性红壤腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 227-232.
[13] 刘在健,王佳,张彭辉,王燕华,张源. 5083铝合金在海水中的腐蚀行为及其阴极保护研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 239-244.
[14] 许洪梅, 柳伟, 曹立新, 苏革, 高荣杰. 304不锈钢表面ZnO/TiO2复合薄膜的制备与光生阴极防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
[15] 邱景, 杜敏, 陆原, 张颖, 郭海军, 李成杰. X65碳钢在模拟油田采出水中的阴极保护研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 333-338.