Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (6): 507-514    DOI: 10.11902/1005.4537.2013.215
  本期目录 | 过刊浏览 |
304不锈钢表面ZnO/TiO2复合薄膜的制备与光生阴极防腐蚀性能研究
许洪梅, 柳伟(), 曹立新, 苏革, 高荣杰
中国海洋大学材料科学与工程研究院 青岛 266100
Preparation of ZnO/TiO2 Composite Film on 304 Stainless Steel and Its Photo-cathodic Protection Properties
XU Hongmei, LIU Wei(), CAO Lixin, SU Ge, GAO Rongjie
Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(3848 KB)   HTML
摘要: 

采用溶胶-凝胶法和旋涂技术在304不锈钢表面制备了纳米ZnO/TiO2复合薄膜,使用XRD和SEM对复合薄膜的晶体结构和表面形貌进行了表征。采用电化学分析手段研究了薄膜的复合方式和煅烧温度对复合薄膜光电性能的影响, 考察了复合薄膜在3.0%NaCl溶液中对304不锈钢的光阴极保护性能。结果表明,采用分层制备和分步煅烧工艺制备的ZnO/TiO2复合薄膜具有优良的光电性能,在紫外光激发下对304不锈钢的光阴极保护性能要显著优于单一TiO2薄膜和ZnO薄膜。

关键词 304不锈钢ZnO/TiO2复合薄膜光电性能光阴极保护    
Abstract

ZnO/TiO2 composite film was prepared on the surface of 304 stainless steel by sol-gel technique and spin coating method. The phase composition and microstructure of the as-prepared ZnO/TiO2 composite film was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The effect of the preparation procedure and calcination temperature on the photoelectric property has been investigated and the photocathodic protection performance of such composite film for 304 stainless steel was also evaluated in 3.0%NaCl solution by using the electrochemical method. The results indicate that the composite film prepared by two-step procedure with proper calcination temperature exhibits excellent photo-electrochemical performance. The photocathodic protection property of ZnO/TiO2 composite film for 304 stainless steel under UV light illumination is significantly superior to that of pure TiO2 film and ZnO film respectively.

Key words304 stainless steel    ZnO/TiO2 composite film    photo-electrochemical    photocathodic protection
    
ZTFLH:  TG134.1  
基金资助:中央高校基本科研业务费中国海洋大学青年教师专项基金项目 (201113001) 资助
作者简介: null

许洪梅,女,1988年生,硕士生,研究方向为海洋环境下材料的物理化学行为

引用本文:

许洪梅, 柳伟, 曹立新, 苏革, 高荣杰. 304不锈钢表面ZnO/TiO2复合薄膜的制备与光生阴极防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
Hongmei XU, Wei LIU, Lixin CAO, Ge SU, Rongjie GAO. Preparation of ZnO/TiO2 Composite Film on 304 Stainless Steel and Its Photo-cathodic Protection Properties. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 507-514.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.215      或      https://www.jcscp.org/CN/Y2014/V34/I6/507

图1  不同温度煅烧所得ZnO薄膜和 ZnO/TiO2复合薄膜的XRD谱
图2  不同温度煅烧的ZnO薄膜表面与裂纹处的SEM像
图3  ZnO/TiO2复合薄膜的表面, 断裂面, 断面中间层和断面下层薄膜的局部放大图
图4  涂覆不同薄膜的304不锈钢试样的开路电位-时间曲线
图5  涂覆ZnO/TiO2复合薄膜试样的开路电位和电流密度随ZnO煅烧温度的变化趋势
图6  涂覆ZnO/TiO2复合薄膜试样的开路电位和电流密度随ZnO/TiO2热处理温度的变化趋势
图7  在暗态和紫外光激发下304不锈钢裸样, 分别涂覆TiO2薄膜和ZnO/TiO2复合薄膜试样在3.0%NaCl溶液中的极化曲线
Electrode Rs / Ω Qf Rf / Ω Qdl Rt / Ω
Yo n Yo n
Bare 304 SSa 5.72 1.19×10-4 0.822 2.42×103 3.64×10-5 0.989 6.37×104
2Ta 8.06 1.13×10-4 0.534 9.31×104 5.97×10-5 0.843 5.65×105
Ti/Zna 6.29 1.17×10-4 0.865 3.94×103 4.16×10-5 0.827 3.09×105
2Tb 7.04 2.07×10-5 0.797 9.16 2.20×10-5 0.790 1.20×104
Ti/Znb 5.04 1.96×10-5 0.693 9.66×101 8.13×10-5 0.980 6.37×103
表1  Nyuist图等效电路图的拟合参数
图8  试样在3.0%NaCl溶液中的Nyquist图及其等效电路图
[1] Ohko Y, Saitoh S, Tatsuma T, et al. Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel[J]. J. Electrochem. Soc., 2001, 148(1): B24-B28
[2] Park H, Kim K Y, Choi W. Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode[J]. J. Phys. Chem., 2002, 106(18)B: 4775-4781
[3] Shen G X, Chen Y C, Lin C J. Corrosion protection of 316L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method[J]. Thin Solid Films, 2005, 489(1/2): 130-136
[4] Shen G X, Chen Y C, Lin L, et al. Study on a hydrophobic nano-TiO2 coating and its properties for corrosion protection of metals[J]. Electrochim. Acta, 2005, 50(25/26): 5083-5089
[5] Lei C X, Zhou H, Feng Z D, et al. Low-temperature liquid phase deposited TiO2 films on stainless steel for photogenerated cathodic protection applications[J]. Appl. Surf. Sci., 2011, 257(16): 7330-7334
[6] Shen G X, Chen Y C, Li J, et al. Preparation of the TiO2-SnO2 composite films and its function of photo generated cathodic protection of 316L stainless steel[J]. J. Chin. Soc. Corros. Prot., 2006, 26(2): 109-114
[6] (沈广霞, 陈艺聪, 李静等. 纳米TiO2-SnO2复合薄膜的光生阴极保护作用及机理研究[J]. 中国腐蚀与防护学报, 2006, 26(2): 109-114)
[7] Tatsuma T, Saitoh S, Ohko Y, et al. TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability[J]. Chem. Mater., 2001, 13(9): 2838-2842
[8] Shen G X, Chen Y C, Lin C J. Preparation of nano TiO2-V2O5 composite coating and its functions in corrosion protection of metals[J]. Acta Phys.-Chim. Sin., 2005, 21(5): 485-489
[8] (沈广霞, 陈艺聪, 林昌健. TiO2-V2O5纳米复合膜的制备及防腐蚀性能[J]. 物理化学学报, 2005, 21(5): 485-489)
[9] Liu W, Wang Y G, Cao L X, et al. Preparation of MWCNTS/TiO2 composite film and its application of photocathodic property for stainless steel[J]. J. Chin. Soc. Corros. Prot., 2012, 32(6): 485-490
[9] (柳伟, 王永刚, 曹立新等. 多壁纳米碳管/TiO2复合薄膜的制备与光阴极保护性能研究[J]. 中国腐蚀与防护学报, 2012, 32(6): 485-490)
[10] Guo X Q, Liu W, Cao L X, et al. Graphene incorporated nanocrystall-ine TiO2 films for the photocathodic protection of 304 stainless steel[J]. Appl. Surf. Sci., 2013, 283(15): 498-504
[11] Coleman V A, Jagadish C. Zinc Oxide Bulk, Thin Films and Aano- structure [M]. London: Elsevier, 2006, 1-20
[12] Yan X D, Zou C W, Gao X D, et al. ZnO/TiO2 core-brush nanostructure: processing, microstructure and enhanced photocatalytic activity[J]. J. Mater. Chem., 2012, 22(12): 5629-5640
[13] Mane R S, Lee W J, Pathan H M, et al. Nanocrystalline TiO2/ZnO thin films: fabrication and application to dye-sensitized solar cells[J]. J. Phys. Chem., 2005, 109(51)B: 24254-24259
[14] Aal A A, Barakat M A, Mohamed R M. Electrophoreted Zn-TiO2-ZnO nanocomposite coating films for photocatalytic degradation of 2-chlorophenol[J]. Appl. Surf. Sci., 2008, 254(15): 4577-4583
[1] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[4] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[5] 彭文山,侯健,丁康康,郭为民,邱日,许立坤. 深海环境中304不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[6] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[7] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[8] 张思齐,杜楠,王梅丰,王帅星,赵晴. 阴极面积对3.5%NaCl溶液中304不锈钢稳态点蚀生长速率的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[9] 艾莹珺,杜楠,赵晴,黄世新,王力强,文庆杰. 温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 135-141.
[10] 沈杰,刘卫,王铁钢,潘太军. 304不锈钢双极板表面TiN涂层的腐蚀和导电行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 63-68.
[11] 王永利,马利,熊良银,刘实. 夹杂对自来水环境下304不锈钢腐蚀及金属离子溶出的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 328-334.
[12] 方玉荣,付朝阳. 酸性FeCl3溶液中304不锈钢的超声腐蚀和缓蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(4): 305-310.
[13] 叶超, 杜楠, 田文明, 赵晴, 朱丽. pH值对304不锈钢在3.5%NaCl溶液中点蚀过程的影响[J]. 中国腐蚀与防护学报, 2015, 35(1): 38-42.
[14] 王永刚,柳伟,曹立新,苏革,郭祥芹,段瑞景,许洪梅. 多壁纳米碳管/TiO2复合薄膜的制备与光阴极保护性能研究[J]. 中国腐蚀与防护学报, 2012, 32(6): 485-490.
[15] 田文明,杜楠,赵晴. 电子散斑干涉技术测量304不锈钢点蚀电位 的方法研究[J]. 中国腐蚀与防护学报, 2012, 32(5): 431-436.