Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (5): 472-476    DOI: 10.11902/1005.4537.2014.171
  本期目录 | 过刊浏览 |
X80管线钢红壤腐蚀初期电化学行为
么惠平1, 闫茂成2(), 杨旭1, 孙成2
1. 中国石油西南管道公司南宁输油气分公司 南宁 530000
2. 中国科学院金属研究所 国家金属腐蚀控制工程技术研究中心 沈阳 110016
Electrochemical Behavior of X80 Pipeline Steel in the Initial Stage of Corrosion in an Acidic Red Soil
YAO Huiping1, YAN Maocheng2(), YANG Xu1, SUN Cheng2
1. Nanning Oil and Gas Branch, Petrochina Southwest Pipeline Company, Nanning 53000, China
2. National Engineering Center for Corrosion Control, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(1885 KB)   HTML
摘要: 

通过室内土壤埋样实验,采用电化学阻抗谱 (EIS) 和极化技术研究了X80管线钢在红壤泥浆中的早期腐蚀行为。结果表明,X80管线钢在水饱和红壤中腐蚀初期 (15 d内) 的EIS具有两个时间常数特征,高频端呈现土壤介质特征容抗弧,10-2~104 Hz频区为腐蚀界面反应过程对应的容抗弧,低频区 (<10-2) 为点蚀形核期产生的感抗弧;腐蚀30 d后电极反应过程受扩散过程控制。提出了红壤对管线钢的高腐蚀性与红壤铁氧化物间的关联。

关键词 土壤腐蚀管道钢酸性红壤红壤    
Abstract

Corrosion of X80 pipeline steel in an acidic red soil slurry was studied by means of electrochemical impedance spectroscopy (EIS) and polarization technique. The results show that in a water-saturated red soil, the EIS of X80 steel contains a capacitive arc at high frequency and a capacitive arc from the interface process in frequency region of 10-2~104 Hz as well as an inductive loop appears at low frequency exhibiting processes related with adsorption or pitting nucleation; the electrode process was controlled by diffusion process after 30 d exposure; iron oxides residing in the soil tend to enhance the corrosion process of the steel, correspondingly a corrosion mechanism has been proposed.

Key wordssoil corrosion    pipeline steel    acidic soil    red soil
    
ZTFLH:  TG174  
基金资助:基金项目:国家自然科学基金项目 (51131001) 资助
作者简介: null

么惠平,男,1969年生,助理工程师,研究方向为长输管道的运营和管理

引用本文:

么惠平, 闫茂成, 杨旭, 孙成. X80管线钢红壤腐蚀初期电化学行为[J]. 中国腐蚀与防护学报, 2014, 34(5): 472-476.
Huiping YAO, Maocheng YAN, Xu YANG, Cheng SUN. Electrochemical Behavior of X80 Pipeline Steel in the Initial Stage of Corrosion in an Acidic Red Soil. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 472-476.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.171      或      https://www.jcscp.org/CN/Y2014/V34/I5/472

图1  X80管线钢的显微组织结构
图2  X80管道钢在水饱和红壤中分别暴露1和60 d后的Tafel曲线
图3  X80管线钢在鹰潭红壤泥浆中埋样不同时间后的EIS谱
图4  X80钢在水饱和红壤泥浆中暴露10和60 d后试样的SEM像
图5  X80管线钢在红壤泥浆中测量的EIS的等效电路
Time d Rs
kΩcm2
Cs
10-10 Fcm-2
Rct
kΩcm2
Qdl
Y0 / S sncm-2 n
1 5.578 1.233 3.371 1.228×10-4 0.9778
5 5.365 0.828 4.052 1.415×10-4 0.8128
10 4.619 0.932 3.836 2.142×10-4 0.9458
15 3.854 3.825 3.763 3.069×10-4 0.8953
30 3.776 0.950 3.729 1.100×10-3 0.5009
45 3.605 1.181 5.729 1.660×10-3 0.4456
60 3.558 1.253 6.234 1.730×10-3 0.3957
表1  由等效电路 (CsRs) (QdlRct)拟合所得电化学参数
图6  由等效电路 (CsRs) (QdlRct) 拟合得到的Rs与Rct随埋样时间的变化
[1] Cole I S, Marney D. The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soils[J]. Corros. Sci., 2012, 56: 55-16
[2] Yan M C, Sun C, Xu J, et al. Role of Fe oxides in corrosion of pipeline steel in a red clay soil[J]. Corros. Sci., 2014, 80: 309-317
[3] Li C, Du C W. Characteristics of electrochemical impedance spectroscopy for X100 pipeline steel in water-saturated acidic soil[J]. J. Chin. Soc. Corros. Prot., 2011, 31(5): 377-380
[3] (李超, 杜翠薇.X100管线钢在水饱和酸性土壤中的电化学阻抗谱特征[J]. 中国腐蚀与防护学报, 2011, 31(5): 377-380)
[4] Yang S, Tang N, Yan M C, et al. Corrosion of X80 pipeline steel in acidic soils: Effect of Temperature[J]. J. Chin. Soc. Corros. Prot., Accepted
[4] (杨霜, 唐囡, 闫茂成等. X80管线钢酸性土壤腐蚀行为: 温度的影响, 中国腐蚀与防护学报, 已接收)
[5] Zhang G Y. Q235 steel's corrosion morphology in red soil under different moisture conditions[J]. Chin. Agric. Sci. Bull., 2010, 26(20): 393-396
[5] (章钢娅. Q235钢在不同湿度红壤中的腐蚀形貌研究[J]. 中国农学通报, 2010, 26(20): 393-396)
[6] Cao C N. Material Natural Environment Corrosion in China[M]. Beijing: Chemical Industry Press, 2005
[6] (曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社, 2005)
[7] Yan M C, Wang J Q, Han E-H, et al. Characteristics and evolution of thin layer electrolyte on pipeline steel under cathodic protection shielding disbonded coating[J]. Acta Metall. Sin., 2014, 50(9): 1137-1145
[7] (闫茂成, 王俭秋, 韩恩厚等.埋地管线阴极保护屏蔽剥离涂层下薄液腐蚀环境特征及演化[J]. 金属学报, 2014, 50(9): 1137-1145)
[8] Yan M C, Wang J Q, Han E-H, et al. Local environment under simulated disbonded coating on steel pipelines in soil solution[J]. Corros. Sci., 2008, 50: 1331-1339
[9] Yan M C, Wang J Q, Ke W, et al.Effectiveness of cathodic protection under simulated disbonded coating on pipelines[J]. J. Chin. Soc. Corros. Prot., 2007, 27: 257-262
[9] (闫茂成, 王俭秋, 柯伟等. 埋地管线剥离覆盖层下阴极保护的有效性[J]. 中国腐蚀与防护学报, 2007, 27: 257-262)
[10] Romanoff M. Underground Corrosion, National Bureau of Standards Circular 579, United States Departrment of Commerce, Washington DC, 1957
[11] Tan Y J.Experimental methods designed for measuring corrosion in highly resistive and inhomogeneous media[J]. Corros. Sci., 2011, 53: 1145-1155
[12] Barbalat M, Lanarde L, Caron D, et al. Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection[J]. Corros. Sci., 2012, 55: 246-253
[13] Li M C, Lin H C, Cao C N. Study on soil corrosion of carbon steel by electrochemical impedance spectroscopy (EIS)[J]. J. Chin. Soc. Corros. Prot., 2000, 20(2): 111-117
[13] (李谋成, 林海潮, 曹楚南. 碳钢在土壤中腐蚀的电化学阻抗谱特征[J]. 中国腐蚀与防护学报, 2000, 20(2): 111-117)
[14] Cao C N. Introduction of Electrochemical Impedance Spectroscopy[M]. Beijing: Science Press, 2002
[14] (曹楚南. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002)
[15] Li J Y, Xu R K. Inhibition of acidification of kaolinite and an Alfisol by aluminum oxides through electrical double-layer interaction and coating[J]. Eur. J. Soil Sci., 2013, 64(1): 110-120
[16] Ismail A I M, El-Shamy A M. Engineering behaviour of soil materials on the corrosion of mild steel[J]. Appl. Clay Sci., 2009, 42: 356-362
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 朱亦晨,刘光明,刘欣,裴锋,田旭,师超. 红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
[3] 王帅星,杜楠,刘道新,肖金华,邓丹萍. X80钢在酸性红壤模拟液及室外红壤中的腐蚀动力学规律及相关性分析[J]. 中国腐蚀与防护学报, 2019, 39(1): 18-28.
[4] 于利宝, 闫茂成, 王彬彬, 舒韵, 许进, 孙成. 酸性土壤环境中Q235钢的微生物腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
[5] 王晓霖, 闫茂成, 舒韵, 孙成, 柯伟. 破损涂层下管线钢的交流电干扰腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[6] 黄涛,陈小平,王向东,米丰毅,刘芮,李向阳. pH值对Q235钢在模拟土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 31-38.
[7] 刘淑云, 王帅星, 杜楠, 王力强, 肖金华. X80管线钢在不同pH值红壤模拟溶液中的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2015, 35(1): 21-26.
[8] 聂向晖, 李晓刚,李云龙,李记科, 张鸿博. 土壤腐蚀加速试验的加速比与动力学相关性研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 208-213.
[9] 黄家怿 邱于兵 郭兴蓬. 采用聚类分析研究X70钢在库尔勒土壤中初期电化学噪声特征[J]. 中国腐蚀与防护学报, 2009, 29(6): 453-458.
[10] 王永红; 章钢娅; 鹿中晖; 李英志; 孙慧珍 . 铅、铝、铜土壤腐蚀随季节变化规律研究[J]. 中国腐蚀与防护学报, 2007, 27(6): 326-328 .
[11] 金普军; 秦颖; 龚明 . 湖北枣阳九连墩战国楚墓青铜器铅锡焊料的腐蚀机理探讨[J]. 中国腐蚀与防护学报, 2007, 27(3): 162-166 .
[12] 许述剑; 翁永基; 李相怡 . 图像分维对腐蚀坑分布特征的表征[J]. 中国腐蚀与防护学报, 2007, 27(2): 109-113 .
[13] 王荣; 介燕妮 . 陕京管线典型土壤环境的腐蚀性研究[J]. 中国腐蚀与防护学报, 2006, 26(4): 211-215 .
[14] 王永红; 鹿中晖; 李英志 . 西部内陆盐土中铜、铝的腐蚀行为[J]. 中国腐蚀与防护学报, 2005, 25(5): 303-306 .
[15] 翁永基; 李相怡 . 土壤中碳钢平均腐蚀速度统计特征的分形研究[J]. 中国腐蚀与防护学报, 2005, 25(4): 200-204 .