Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (4): 305-314    DOI: 10.11902/1005.4537.2016.080
  综合评述 本期目录 | 过刊浏览 |
储罐底板阴极保护电位分布研究进展
寇杰1,2(), 张新策2, 崔淦2, 杨宝安3
1 中国石油大学 (华东) 山东省油气储运安全省级重点实验室 青岛市环海油气储运技术重点实验室 青岛 266580
2 中国石油大学 (华东) 储运与建筑工程学院 青岛 266580
3 中国石油化工股份有限公司 天然气榆济管道分公司 济南 250000
Research Progress on Cathodic Protection Potential Distribution of Tank Bottom Plate
Jie KOU1,2(), Xince ZHANG2, Gan CUI2, Baoan YANG3
1 Shandong Provincial Key Laboratory of Oil & Gas Storage and Transportation Safety, Qingdao Key Laboratory of Circle Sea Oil & Gas Storage and Transportation Technology, China Univeristy of Petroleum, Qingdao 266580, China
2 College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China
3 China Petroleum and Chemical Corporation, Yulin to Jinan Gas Pipeline Subsidiary, Jinan 250000, China
全文: PDF(2963 KB)   HTML
摘要: 

总结了近几十年储罐底板阴极保护电流密度及电位分布的研究发展现状,阐述并探讨了储罐底板解析法和数值方法的研究现状和问题。提出数值方法取代解析法是未来研究的一种发展趋势,且数学模型和边界条件的进一步优化以及多种数值方法的联合使用将是数值模拟进一步发展的方向。

关键词 储罐底板解析法数值方法边界条件联合使用阴极保护    
Abstract

Cathodic protection is an important method to prevent the corrosion of tank bottom plate. In this article,the research status in recent decades about the current density- and potential-distribution of tank bottom plate under cathodic protection is summarized. The research status and the relevant issues related with the analytical method and numerical analysis method applied for the status of cathodic protection of tank bottom plates are described and discussed. The authors prospect that the analytical method will be gradually replaced by numerical method, while the mathematical model and boundary conditions need to be further studied and improved. In addition,the combined use of a variety of numerical methods will be a trend in the development of numerical simulation in the future.

Key wordstank bottom plate    analytical method    numerical method    boundary condition    combined use    cathodic protection
收稿日期: 2016-06-20     
ZTFLH:  TG174.41  
作者简介:

作者简介 寇杰,男,1969年生,博士,教授

引用本文:

寇杰, 张新策, 崔淦, 杨宝安. 储罐底板阴极保护电位分布研究进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
Jie KOU, Xince ZHANG, Gan CUI, Baoan YANG. Research Progress on Cathodic Protection Potential Distribution of Tank Bottom Plate. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 305-314.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.080      或      https://www.jcscp.org/CN/Y2017/V37/I4/305

图1  罐底阴极保护电位的计算值和实测值对比[9]
图2  储罐底板电位分布[10]
图3  罐旁单侧深井阳极阴极保护系统简化图[12]
图4  用于计算罐底板外侧电位分布的网格和典型元素示意图[22]
图5  二维有限元分析几何模型[28]
图6  三维有限元分析几何模型[28]
Test point E (Measured)mV E(Numerical)mV Relative%
A -994 -984 -1.0
B -973 -980 0.7
C -956 -969 1.4
D -940 -947 0.7
E -912 -950 4.0
F -903 -945 4.4
G -893 -965 8.1
H -924 -975 5.5
表1  电位 (SCE) 分布结果的对比
图7  储罐底板网格划分示意图[1]
图8  钢制储罐牺牲阳极阴极保护系统二维模型示意图[37]
图9  边界元计算结果与实验结果对比图[37]
图10  实验系统示意图[42]
图11  钢板上测试点示意图[42]
图12  模拟数据与实测数据对比图[42]
[1] Douglas P R, Mark E O.A mathematical model for the cathodic protection of tank bottoms[J]. Corros. Sci., 2005, 47: 849
[2] Levich V G.The theory of concentration polarization[J]. Acta physicochim. URSS, 1942, 17: 257
[3] Morgan J H.Cathodic Protection[M]. London: Leonard Hill, 1949
[4] Smyrl W H, Newman J.Detection of nonuniform current distribution on a disk electrode[J]. J. Electrochem. Soc., 1972, 199: 208
[5] Newman J, Thomas-Alyea K E. Electrochemical Engineering[M]. New Jersey: Prentice-Hall, 1991
[6] Newman J.Cathodic protection of a plane with parallel cylindrical anodes[J]. J. Electrochem. Soc., 1997, 144: 450
[7] Li X Z, Newman J.Cathodic protection for disks of various diameters[J]. J. Electrochem. Soc., 2001, 148B: 157
[8] Weng Y J, Li X Y.Judgment of cathodic protection effectiveness on tank bottom by potential distribution modeling[J]. Oil Gas Storage Transport., 1998, 17(1): 35(翁永基, 李相怡. 用电位分布数学模型评价罐底阴极保护效果[J]. 油气储运, 1998, 17(1) : 35)
[9] Li X Y, Weng Y J.Calculating potential distribution on exterior of tank bottoms by analytical algorithm[J]. Acta Petrol. Sin., 1998, 19(3): 98(李相怡, 翁永基. 金属储罐底板外侧阴极保护电位分布的解析计算法[J]. 石油学报, 1998, 19(3): 98)
[10] Liang H, Liu S M, Xiao R G.Analysis on distribution inhomogeneity of cathodic protection potential for bottom plate of oil tank[J]. Oil Gas Storage Transport., 2004, 23(4): 39(梁宏, 刘书梅, 肖容鸽. 储罐底板阴极保护电位分布不均匀性分析[J]. 油气储运, 2004, 23(4): 39)
[11] Geng X M.Underground electric field calculation for regional cathodic protection of oil-station [D]. Qingdao: China University of Petroleum, 2003(耿小梅. 区域性阴极保护地下电场计算及阳极位置优化 [D]. 青岛: 中国石油大学, 2003)
[12] Du Y X, Zhang G Z, Liu G.Potential distributions on external tank bottom under cathodic protection of deep well anode[J]. J. Electrochem., 2006, 12: 55(杜艳霞, 张国忠, 刘刚. 罐底外侧深井阳极阴极保护电位分布规律研究[J]. 电化学, 2006, 12: 55)
[13] Wang D, Liao K X, Li Y X, et al.Potential distribution at the steel tank bottom in Yaha loading south station[J]. Corros. Prot., 2014, 35: 1270(王东, 廖柯熹, 李月霄等. 牙哈装车南站钢质储罐底板的电位分布[J]. 腐蚀与防护, 2014, 35: 1270)
[14] Zhou L.A simulated experimental investigation on the cathodic protection potential distribution of external tank botton [D]. Qingdao: China University of Petroleum, 2008(周磊. 罐底外侧阴极保护电位分布模拟试验研究 [D]. 青岛: 中国石油大学, 2008)
[15] Kranc S C, Sagüés A A.Detailed modeling of corrosion macrocells on steel reinforcing in concrete[J]. Corros. Sci., 2001, 43: 1355
[16] Adey R A, Niku S M.Computer modelling of galvanic corrosion[J]. ASTM Spec. Tech. Publ., 1988, 978: 96
[17] Allahar K N, Orazem M E.On the extension of CP models to address cathodic protection under a delaminated coating[J]. Corros. Sci., 2009, 51: 962
[18] Verbrugge M.Galvanic corrosion over a semi-infinite planar surface[J]. Corros. Sci., 2006, 48: 3489
[19] DeGiorgi V G, Thomas III E D, Lucas K E. Scale effects and verification of modeling of ship cathodic protection systems[J]. Eng. Analy. Bound. Elem., 1998, 22: 41
[20] DeGiorgi V G, Wimmer S A. Geometric details and modeling accuracy requirements for shipboard impressed current cathodic protection system modeling[J]. Eng. Anal. Bound. Elem., 2005, 29: 15
[21] Bia[lstrok]ecki R A, Ostrowski Z, Kassab A J, et al. Coupling BEM, FEM and analytic solutions in steady-state potential problems[J]. Eng. Anal. Bound. Elem., 2002, 26: 597
[22] Qiu F, Xu N X.Potential distribution on cathodically protected external tank bottom[J]. J. Chin. Soc. Corros. Prot., 1996, 16(1): 29(邱枫, 徐乃欣. 钢质贮罐底板外侧阴极保护时的电位分布[J]. 中国腐蚀与防护学报, 1996, 16(1): 29)
[23] Ma W P, Zhang G Z, Liang C H, et al.Numerical modeling of deepwell anode to cathodic protection of bottom plate of tank[J]. Oil Gas Storage Transport., 2004, 23(9): 31(马伟平, 张国忠, 梁昌华等. 深井阳极对储罐底板阴极保护的数值模拟[J]. 油气储运, 2004, 23(9): 31)
[24] De Lacerda L A, Da Silva J M, Lázaris J. Dual boundary element formulation for half-space cathodic protection analysis[J]. Eng. Anal. Bound. Elem., 2007, 31: 559
[25] Du Y X.An investigation of the cathodic protection potential distribution on the exterior of steel tank bottom [D]. Qingdao: China University of Petroleum, 2007(杜艳霞. 金属储罐底板外侧阴极保护电位分布规律研究 [D]. 青岛: 中国石油大学, 2007)
[26] Ma W P, Zhang G Z, Bai C C, et al.The research evolvement on regional cathodic protection technique[J]. Oil Gas Storage Transport., 2005, 24(9): 38(马伟平, 张国忠, 白宗成等. 区域性阴极保护技术研究进展[J]. 油气储运, 2005, 24(9): 38)
[27] Hao H N, Li Z L, Wang T Y, et al.Determination of boundary conditions for numerical simulation of cathodic protection[J]. Oil Gas Storage Transport., 2011, 30: 504(郝宏娜, 李自力, 王太源等. 阴极保护数值模拟计算边界条件的确定[J]. 油气储运, 2011, 30: 504)
[28] Bazzoni B, Lorenzi S, Marcassoli P, et al.Current and potential distribution modeling for cathodic protection of tank bottoms[J]. Corrosion, 2011, 67: 026001
[29] Zhou B, Han W L, Zhang Y Y.Application of modern cathodic protection techniques in oil industry[J]. Corros. Prot., 2012, 33(S2): 30(周冰, 韩文礼, 张盈盈. 储罐内底板牺牲阳极阴极保护电流分布的有限元模拟[J]. 腐蚀与防护, 2012, 33(S2): 30)
[30] Dong L W, Liao K X, Dong B.Selection of soil resistivity in numerical calculation of cathodic protection[J]. Mater. Prot., 2015, 48(10): 16(董龙伟, 廖柯熹, 董斌. 阴极保护数值计算中土壤电阻率的选取[J]. 材料保护, 2015, 48(10): 16)
[31] Fu J W, Chow J S K. Cathodic protection designs using an integral equation numerical method[J]. Mater. Perform., 1982, 21(10): 9
[32] Weng Y J.The research and application of mathematical modeling in cathodic protection design techniques[J]. Corros. Sci. Prot. Technol., 1999, 11: 36(翁永基. 阴极保护设计中的模型研究及其应用[J]. 腐蚀科学与防护技术, 1999, 11: 36)
[33] Miyasaka M, Hashimoto K, Kishimoto K, et al.A boundary element analyses on galvanic corrosion problems-computational accuracy on galvanic fields with screen plates[J]. Corros. Sci., 1990, 30: 299
[34] Jia J X, Song G, Atrens A, et al.Evaluation of the BEASY program using linear and piecewise linear approaches for the boundary conditions[J]. Mater. Corros., 2004, 55: 845
[35] Xia Z C.Calculation on the cathodic protection potential distribution of the ground steel tank bottom [D]. Dalian: Dalian University of Technology, 2000(夏宗春. 地面钢质贮罐底板外侧阴极保护电位分布计算 [D]. 大连: 大连理工大学, 2000)
[36] Robert A, John B.Computer Simulation as an aid to CP System Design and Interference Prediction [A]. Proceedings of the CEOCOR 2000 Conference[C]. Brussels, Belgium, 2000
[37] Abootalebi O, Kermanpur A, Shishesaz M R, et al.Optimizing the electrode position in sacrificial anode cathodic protection systems using boundary element method[J]. Corros. Sci., 2010, 52: 678
[38] Zhang F, Chen H Y, Li G D, et al.The application of numerical simulation in cathodic protection of pipelines and stations[J]. Oil Gas Storage Transport., 2011, 30: 208(张丰, 陈洪源, 李国栋等. 数值模拟在管道和站场阴极保护中的应用[J]. 油气储运, 2011, 30: 208)
[39] Qi J T, Li Y.Numerical simulation of cathodic protection field for the wa-ter phase area in naphtha storage tank[J]. Mar. Sci., 2012, 36(11): 79(齐建涛, 李焰. 海运石脑油储罐水相区阴极保护电场的数值模拟[J]. 海洋科学, 2012, 36(11): 79)
[40] Sun H.Numerical simulation and construction of the cathodic protection effect on the tank inside bottom plate[J]. Corros. Prot., 2013, 34: 937(孙洪. 储罐内底板阴极保护效果的数值模拟及施工[J]. 腐蚀与防护, 2013, 34: 937)
[41] Wang D.Study on cathodic protection potential distribution of tank bottom plate at Yaha loading station [D]. Chengdu: Southwest Petroleum University, 2015(王东. 牙哈装车南站储罐底板阴极保护电位分布研究 [D]. 成都: 西南石油大学, 2015)
[42] Du Y X, Lu M X, Shao S B, et al.Investigation of the cathodic protection potential distribution on the exterior of steel tank bottom [A]. Corrosion 2011[C]. Houston, Texas: NACE International, 2011
[43] Du Y X, Zhang G Z, Li J.Numerical calculation of cathodic protection potential distribution[J]. J. Chin. Soc. Corros. Prot., 2008, 28: 53(杜艳霞, 张国忠, 李健. 阴极保护电位分布的数值计算[J]. 中国腐蚀与防护学报, 2008, 28: 53)
[44] Brichau F, Deconinck J.A numerical model for cathodic protection of buried pipes[J]. Corrosion, 1994, 50: 39
[45] Zhou B, Han W L, Zhang Y Y.Applications of modern cathodic protection techniques in oil industry[J]. Corros. Prot., 2012, 33(S2): 30(周冰, 韩文礼, 张盈盈. 储罐内底板牺牲阳极阴极保护电流分布的有限元模拟[J]. 腐蚀与防护, 2012, 33(S2): 30)
[46] Zhang N.Numerical simulation of the regional cathodic protection of the pipeline in the station [D]. Qingdao: China University of Petroleum, 2012(张娜. 站场管道区域性阴极保护数值模拟 [D]. 青岛: 中国石油大学, 2012)
[47] Cui G, Li Z L, Zhao L Y, et al.Local cathodic protection design based on numerical simulation[J]. Anti-Corros. Method. Mater., 2015, 62: 407
[48] Cui G, Li Z L, Yang C, et al.Study on the interference corrosion of cathodic protection system[J]. Corros. Rev., 2015, 33: 233
[49] Cui G, Li Z L, Yang C, et al.The influence of DC stray current on pipeline corrosion[J]. Petrol. Sci., 2016, 13: 135
[50] Du Y X, Zhang G Z.Numerical modeling of cathodic protection potential distribution on the exterior of tank bottom[J]. J. Chin. Soc. Corros. Prot., 2006, 26: 346(杜艳霞, 张国忠. 储罐底板外侧阴极保护电位分布的数值模拟[J]. 中国腐蚀与防护学报, 2006, 26: 346)
[51] Liao K X, Dong L W, Zhang H X.Prediction model and precision of cathodic protection potential distribution on the outer bottom surface of metal tank[J]. Mater. Prot., 2015, 48(8): 1(廖柯熹, 董龙伟, 张淮鑫. 金属储罐外底面阴极保护电位分布的预测模型及其精准性[J]. 材料保护, 2015, 48(8) : 1)
[52] Vittonato J, Baynham J.General Consideration about Current Distribution and Potential Attenuation Based on Storage Tank Bottom Modeling Study [A]. Corrosion 2012[C]. Salt Lake City, Utah: NACE International, 2012
[1] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[2] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[3] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[4] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[5] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[6] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[7] 邱萍, 杨连捷, 宋玉, 杨鸿飞. 添加DMF对TiO2薄膜光生阴极保护性能影响研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[8] 王晓霖, 闫茂成, 舒韵, 孙成, 柯伟. 破损涂层下管线钢的交流电干扰腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[9] 王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[10] 杨霜,唐囡,闫茂成,赵康文,孙成,许进,于长坤. 温度对X80管线钢酸性红壤腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 227-232.
[11] 刘在健,王佳,张彭辉,王燕华,张源. 5083铝合金在海水中的腐蚀行为及其阴极保护研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 239-244.
[12] 许洪梅, 柳伟, 曹立新, 苏革, 高荣杰. 304不锈钢表面ZnO/TiO2复合薄膜的制备与光生阴极防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
[13] 范丰钦, 宋积文, 李成杰, 杜敏. 海水流速对DH36平台钢阴极保护的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.
[14] 邱景, 杜敏, 陆原, 张颖, 郭海军, 李成杰. X65碳钢在模拟油田采出水中的阴极保护研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 333-338.
[15] 林永华, 张雪峰, 韩利, 张兰河. 变电站接地网的防腐方法研究[J]. 中国腐蚀与防护学报, 2013, 33(6): 501-506.