Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (3): 238-244    DOI: 10.11902/1005.4537.2015.084
  研究报告 本期目录 | 过刊浏览 |
应变作用下Q235碳钢在NaHCO3+NaCl溶液中的孔蚀行为
李阳恒,左禹(),唐聿明,赵旭辉
北京化工大学材料科学与工程学院 北京 100029
Pitting Corrosion Behavior of Q235 Carbon Steel in NaHCO3+NaCl Solution under Strain
Yangheng LI,Yu ZUO(),Yuming TANG,Xuhui ZHAO
School of Materials Science and Engneering, Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(1335 KB)   HTML
摘要: 

用动电位极化、EIS和XPS等方法研究了应变作用下Q235碳钢在NaHCO3+NaCl溶液中的孔蚀行为。结果表明:在0.2 molL-1 NaHCO3+0.01 molL-1 NaCl溶液中,与无应变试样相比,8%的应变导致Q235碳钢的孔蚀电位Eb升高;随溶液Cl-浓度升高,应变试样的Eb逐渐降低,当Cl-浓度增大到0.1 molL-1时,应变试样的Eb值降低到与无应变试样相同的水平。另一方面,应变导致Q235钢钝化膜中Fe3+/Fe2+比值减小,膜阻抗降低,电荷转移电阻变小,钝化膜的稳定性有所降低。在实验条件下应变导致Eb升高的现象归因于溶液中HCO3-的存在,应变促进钢表面的阳极溶解,进而促进了HCO3-在表面的优先吸附,一定程度上抑制了Cl-促进孔蚀的作用。随溶液中HCO3-/Cl-的比值降低,应变导致的Eb值变化逐渐减小直至消失。

关键词 Q235钢孔蚀应变HCO3-钝化膜    
Abstract

The effect of strain on the pitting behavior of Q235 carbon steel in solutions of NaHCO3+NaCl was studied by means of potentiodynamic polarization measurement, EIS and XPS. The results show that in a solution of 0.2 molL-1 NaHCO3+0.01 molL-1 NaCl, a strain of 8% leads to an obvious increase of the pitting potential Eb of Q235 steel, but as the Cl- concentration increased, the difference between the Eb values of strain and strain free samples decreased. When the Cl- concentration increased to 0.1 molL-1, the difference of Eb values disappeared. Besides, strain caused lower impedance, smaller charge transfer resistance Rct and decreased the ratio Fe3+/Fe2+ in the passive film, thereby reduced the stability of passive film. The phenomenon that strain caused the increase of Eb was attributed to that the strain promoted the anodic dissolution of Fe which in turn promoted the preferential adsorption of HCO3- on the surface, as the result the harmful effect of Cl- on the passive film was inhibited. As the ratio HCO3-/Cl- in the solution decreased, the effect of HCO3- decreased and finally disappeared.

Key wordsQ235 steel    pitting corrosion    strain    HCO3-    passive film
收稿日期: 2015-05-11     
基金资助:国家自然科学基金项目 (51171014和51210001) 资助

引用本文:

李阳恒,左禹,唐聿明,赵旭辉. 应变作用下Q235碳钢在NaHCO3+NaCl溶液中的孔蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 238-244.
Yangheng LI, Yu ZUO, Yuming TANG, Xuhui ZHAO. Pitting Corrosion Behavior of Q235 Carbon Steel in NaHCO3+NaCl Solution under Strain. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 238-244.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.084      或      https://www.jcscp.org/CN/Y2016/V36/I3/238

Steel C Mn P S Si Ni Cr O N Fe
Q235 0.110 0.740 0.012 0.0028 0.130 --- --- 0.010 0.0040 Bal.
304 0.050 1.380 0.020 0.001 0.490 8.010 17.080 --- --- Bal.
表1  Q235碳钢与304不锈钢的化学成分
图1  拉伸试样图示
图2  拉伸装置及测试仪器图
图3  在0.01 molL-1 NaCl+0.2 molL-1 NaHCO3溶液中无应变与8%应变的Q235钢试样的动电位极化曲线
图4  无应变和8%应变下Q235碳钢在不同Cl-浓度下的平均Eb及其分布
图5  在3.5%NaCl溶液和3.5%NaCl+0.3 molL-1 NaHCO3溶液中无应变与8%应变条件下304不锈钢试样的动电位极化曲线
图6  无应变和8%应变的Q235碳钢试样慢速动电位极化扫描至40 mV后在含0.2 molL-1 NaHCO3 的0.01 molL-1 NaCl溶液体系中的电化学阻抗谱
Strain Rs / Ωcm2 Rct / Ωcm2 Y0 / Ω-1sncm-2 n
0 96.71 9.062×106 5.274×10-6 0.9412
8% 90.56 3.439×106 8.176×10-6 0.9182
表2  无应变和8%应变Q235碳钢试样在慢速动电位极化扫描至40 mV后在含0.2 molL-1 NaHCO3的0.01 molL-1 NaCl溶液体系中的等效电路元件拟合值
图7  无应变的Q235碳钢试样在0.01 molL-1 NaCl+0.2 molL-1 NaHCO3溶液中慢速动电位极化扫描至40 mV (SCE) 后,其钝化膜表面的Fe2p和O1s XPS峰
图8  8%应变的Q235碳钢试样在0.01 molL-1 NaCl+0.2 molL-1 NaHCO3溶液中慢速动电位极化扫描至40 mV (SCE) 后,其钝化膜表面的Fe2p和O1s XPS峰
Strain FeOOH Fe2O3 FeCO3 Fe0 Fe3+ Fe2+ Fe3+/Fe2+
0 20.97% 26.08% 35.95% 17.03% 47.05% 35.95% 1.309
8% 17.84% 21.53% 45.09% 15.54% 39.37% 45.09% 0.873
表3  Q235碳钢钝化表面的Fe2p峰拟合后的各物质含量
[1] Cheng Y F, Wilmott M, Luo J L.The role of chloride ions in pitting of carbon steel studied by the statistical analysis of electrochemical noise[J]. Appl. Sur. Sci., 1999, 152: 161
[2] Refeay S A M, Taha F, Abd El-Malak A M. Corrosion and inhibition of stainless steel pitting corrosion in alkaline medium and the effect of Cl- and Br- anions[J]. Appl. Sur. Sci., 2005, 242: 114
[3] Ait Albrimi Y, Ait Addi A, Douch J, et al.Inhibition of the pitting corrosion of 304 stainless steel in 0.5 M hydrochloric acid solution by heptamolybdate ions[J]. Corros. Sci., 2015, 90: 522
[4] Almobarak A N, El-Naggar M M, Al-Mufraj R S, et al. Carboxylic acids: Pitting corrosion inhibitors for carbon steel in alkaline medium and in the presence of chlorides[J]. Chem. Tech. Fuels Oils, 2014, 50(2): 170
[5] Rochdi A, Touir R, El Bakri M, et al.Protection of low carbon steel by oxadiazole derivatives and biocide against corrosion in simulated cooling water system[J]. J. Environm. Chem. Eng., 2015, 3: 233
[6] Vignal V, Oltra R, Verneau M, et al.Influence of an elastic stress on the conductivity of passive films[J]. Mater. Sci. Eng., 2001, A303(1/2): 173
[7] Vignal V, Valot C, Oltra R, et al.Analogy between the effects of a mechanical and chemical perturbation on the conductivity of passive films[J]. Corros. Sci., 2002, 44(7): 1477
[8] Yang Q, Luo J L.Effects of hydrogen and tensile stress on the breakdown of passive films on type 304 stainless steel[J]. Electrochim. Acta, 2001, 46(6): 851
[9] Guan L, Zhang B, Yong X P, et al.Effects of cyclic stress on the metastable pitting characteristic for 304 stainless steel under potentiostatic polarization[J]. Corros. Sci., 2015, 93: 80
[10] Ma J, Zhang B, Wang J, et al.Anisotropic 3D growth of corrosion pits initiated at MnS inclusions for A537 steel during corrosion fatigue[J]. Corros. Sci., 2010, 52(9): 2867
[11] Rajabipour A, Melchers R E.A numerical study of damage caused by combined pitting corrosion and axial stress in steel pipes[J]. Corros. Sci., 2013, 76: 292
[12] Yuan W, Huang F, Hu Q, et al.Effects of applied tensile stress on electrochemical behavior of pitting of X80 pipeline steel[J]. J. Chin. Soc. Corros. Prot., 2013, 33(4): 277
[12] (袁玮, 黄峰, 胡骞等. 外加拉应力对X80管线钢点蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 277)
[13] Lv G C, Xu C C, Cheng H D.Critical chloride concentration for SCC of 304 stainless steel[J]. Prog. Chem. Ind., 2008, 27: 1284
[13] (吕国诚, 许淳淳, 程海东. 304不锈钢应力腐蚀的临界氯离子浓度[J]. 化工进展, 2008, 27(8): 1284)
[14] Shibata T, Shibata T.Passivity breakdown and stress corrosion cracking of stainless steel[J]. Corros. Sci., 2007, 49(1): 20
[15] Cao C N, Zhang J Q.Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
[15] (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[16] Zhou Y, Zuo Y.The passivation behavior of mild steel in CO2 saturated solution containing nitrite anions[J]. J. Electrochem. Soc., 2015, 162(1): C47
[17] Yamashita T, Hayes P.Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Appl. Surf. Sci., 2008, 254(8): 2441
[18] Descostes M, Mercier F, Thromat N, et al.Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: Constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium[J]. Appl. Surf. Sci., 2000, 165(4): 288
[19] Feng X, Zuo Y, Tang Y, et al.The influence of strain on the passive behavior of carbon steel in cement extract[J]. Corros. Sci., 2012, 65(12): 542
[20] Mughrabi H.Dual role of deformation-induced geometrically necessary dislocations with respect to lattice plane misorientations and/or long-range internal stresses[J]. Acta Mater., 2006, 54(13): 3417
[21] Li D, Zhu R, Zhang W. The acceleration mechanism of stress on anodic dissolution of bare metal surface [J]. Met. Trans., 1990, 21(12)A: 3260
[22] Zhao J M, Zuo Y.Anodic polarization behaviors of carbon steel in bicarbonate solution[J]. Electrochemistry, 2005, 11(1): 27
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[5] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[6] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[7] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[9] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[10] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[11] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[12] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[13] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[14] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[15] 严寒, 赵晴, 杜楠, 胡彦卿, 王力强, 王帅星. 镀锌层三价铬钝化成膜过程及耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.