Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (3): 245-252    DOI: 10.11902/1005.4537.2015.123
  研究报告 本期目录 | 过刊浏览 |
溴化N-辛烷异喹啉在盐酸溶液中对Q235碳钢的缓蚀行为
王春霞,陈敬平,张晓红,王赪胤()
扬州大学化学化工学院 扬州 225002
Corrosion Inhibition of Octyl Isoquinolinium Bromide on Q235 Carbon Steel in HCl Solution
Chunxia WANG,Jingping CHEN,Xiaohong ZHANG,Chengyin WANG()
College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
全文: PDF(1997 KB)   HTML
摘要: 

采用失重法、动电位极化曲线法和电化学阻抗谱研究了溴化N-辛烷异喹啉 ([C8iQuin]Br) 在盐酸介质中对Q235碳钢的缓蚀行为。结果表明:[C8iQuin]Br是一种同时抑制阳极和阴极反应的混合型缓蚀剂,缓蚀效率随缓蚀剂浓度增大而增大,随温度的升高而降低;[C8iQuin]Br在Q235碳钢表面的吸附符合Laugmuir等温吸附式,吸附平衡常数Kads值较大,说明缓蚀剂在金属表面的吸附能力较强。

关键词 碳钢缓蚀剂溴化N-辛烷异喹啉腐蚀速率缓蚀效率吸附    
Abstract

The corrosion inhibition of octyl isoquinolinium bromide on Q235 carbon steel in HCl solution was studied by means of mass loss test, potentiodynamic polarization curves and electrochemical impedance spectroscopy. The results show that octyl isoquinolinium bromide is a mix-type inhibitor which can inhibit the anodic- and cathodic-reactions. The inhibition efficiency increases with the concentration of inhibitor and decreases with temperature. The adsorption of octyl isoquinolinium bromide on Q235 carbon steel surface accords with Laugmuir isothermal adsorption. The adsorption equilibrium constant Kads is big, which can explain the strong adsorption ability of inhibitor for the steel.

Key wordscarbon steel    inhibitor    octyl isoquinolinium bromide    corrosion rate    inhibitionefficiency    adsorption
收稿日期: 2015-07-20     
基金资助:国家自然科学基金项目 (21375116) 和扬州市-扬州大学科技合作资金项目 (2014-1) 资助

引用本文:

王春霞,陈敬平,张晓红,王赪胤. 溴化N-辛烷异喹啉在盐酸溶液中对Q235碳钢的缓蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 245-252.
Chunxia WANG, Jingping CHEN, Xiaohong ZHANG, Chengyin WANG. Corrosion Inhibition of Octyl Isoquinolinium Bromide on Q235 Carbon Steel in HCl Solution. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 245-252.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.123      或      https://www.jcscp.org/CN/Y2016/V36/I3/245

图1  溴化N-辛烷异喹啉的分子结构图
图2  腐蚀速率及缓蚀效率与 [C8iQuin]Br浓度的关系
图3  腐蚀速率及缓蚀效率与温度的关系
图4  不同温度时C/θ与C的关系
Temperature / K Slope Linear regression coefficient R Kads / M-1 ΔGads / kJmol-1 ΔHads / kJmol-1 ΔSads / Jmol-1K-1
303 1.02 0.9998 16898 -34.64 -16.25 60.80
313 1.02 0.9997 13889 -35.27
323 1.01 0.9998 11765 -35.96
333 1.01 0.9996 9434 -36.46
343 1.02 0.9995 8289 -37.18
353 1.03 0.9998 6711 -37.65
表1  不同温度下 [C8iQuin]Br缓蚀剂在Q235碳钢表面的热力学参数
图5  ?Gads与T的关系
图6  未加缓蚀剂与加入不同浓度缓蚀剂的Arrhenius曲线
C / mmolL-1 A Ea / kJmol-1
0 2.41×106 36.32
0.01 3.80×106 37.85
0.05 1.13×107 41.73
0.10 2.15×107 43.90
0.30 4.19×107 48.04
0.50 6.34×107 50.67
表2  加入缓蚀剂前后腐蚀反应的Ea与A
图7  Q235碳钢在含不同浓度[C8iQuin]Br的1.00 molL-1 HCl溶液中的极化曲线
CmmolL-1 EcorrmV IcorrμAcm-2 bamVdec-1 bcmVdec-1 η%
0 -0.492 738.34 122 124 ---
0.01 -0.488 511.08 111 118 30.78
0.05 -0.478 214.27 83 113 70.98
0.10 -0.474 127.52 77 112 82.73
0.30 -0.477 59.82 102 115 91.90
0.50 -0.470 48.08 101 118 93.49
表3  Q235碳钢在含不同浓度[C8iQuin]Br的1.00 molL-1 HCl溶液中的极化参数和缓蚀效率
图8  Q235碳钢在含不同浓度[C8iQuin]Br的1.00 molL-1HCl溶液中的Nyquist图
图9  阻抗谱等效电路
C / mmolL-1 Rs / Ωcm2 Rp / Ωcm2 Cdl / μFcm-2 η / %
0 1.100 32.37 230.3 ---
0.01 1.001 44.70 45.51 27.58
0.05 0.960 92.43 36.92 64.98
0.10 0.907 145.93 27.08 77.82
0.30 0.814 245.97 17.32 86.84
0.50 0.814 270.07 11.17 88.01
表4  Q235碳钢在添加不同浓度[C8iQuin]Br的1.00 molL-1 HCl溶液中的阻抗拟合参数
图10  Q235碳钢在添加与未添加[C8iQuin]Br缓蚀剂的1.00 molL-1 HCl溶液中浸泡5 h后的表面形貌
[1] Zhang T S.Corrosion Inhibitors [M]. Beijing: Chemical Industry Press, 2001
[1] (张天胜. 缓蚀剂[M]. 北京: 化学工业出版社, 2001)
[2] Tang B, Chen X Y.Study of corrosion inhibitors in acid pickling[J]. Clean World, 2006, 22(2): 22
[2] (汤兵, 陈欣义. 酸洗过程中的缓蚀剂[J]. 清洗世界, 2006, 22(2): 22)
[3] Xie B, Lai C, Zou L K, et al.Inhibition of N,N-diethylammonium O,O'- dicyclohexyldithiophosphate for Q235 steel in sulfuric solution[J]. J. Chin. Soc. Corros. Prot., 2011, 31(3): 225
[3] (谢斌, 赖川, 邹立科等. O,O'-二 (环己基) 二硫代磷酸-N,N-二乙铵对Q235钢在硫酸溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 225)
[4] Lin P C, Sun I W, Chang J K, et al.Corrosion characteristics of nickel, copper, and stainless steel in a Lewis neutral chloroaluminate ionic liquid[J]. Corros. Sci., 2011, 53(12): 4318
[5] Olivaresxometl O, Lopezaguilar C, Herrastigonzalez P, et al.Adsorption and corrosion inhibition performance by three new ionic liquids on API 5L X52 steel surface in acid media[J]. Ind. Eng. Chem. Res., 2014, 53(23): 9534
[6] Xu X L, Huang B H, Liu J, et al.Corrosion inhibition of pyrrolidonium ionic liquids for mild steel in HCl solution[J]. J. Chin. Soc. Corros. Prot., 2011, 31(5): 336
[6] (徐效陵, 黄宝华, 刘军等. 盐酸溶液中吡咯烷酮离子液体对碳钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2011, 31(5): 336)
[7] Jiang W Y, Yu W Z.Classification, synthesis and application of ionic liquid[J]. Met. Mater. Metall. Eng., 2008, 36(4): 51
[7] (蒋伟燕, 余文轴. 离子液体的分类、合成及应用[J]. 金属材料与冶金工程, 2008, 36(4): 51)
[8] Chun J H, Sang K J, Ra K H, et al.The phase-shift method for determining Langmuir adsorption isotherms of over-potentially deposited hydrogen for the cathodic H2 evolution reaction at poly-Re/aqueous electrolyte interfaces[J]. Int. J. Hydrogen Energy, 2005, 30(5): 485
[9] Cao C N.Corrosion Electrochemistry [M]. 3rd. Ed. Beijing: Chemical Industry Press, 2008
[9] (曹楚南. 腐蚀电化学原理 [M]. 第三版. 北京: 化学工业出版社, 2008)
[10] Abdel-Rehim S S, Khaled K F, Abd-Elshafi N S. Electrochemical frequency modulation as a new technique for monitoring corrosion inhibition of iron in acid media by new thiourea derivative[J]. Electrochim. Acta, 2006, 51(16): 3269
[11] Negm N A, Zaki M F.Corrosion inhibition efficiency of nonionic Schiff base amphiphiles of p -aminobenzoic acid for aluminum in 4N HCl[J]. Colloid. Surface., 2008, 322A: 97
[12] Zhu L Q, Liu R Q, Wang J D.Inhibition action of thiodiazole derivatives on corrosion of copper in 3%NaHCO3[J]. J. Chin. Soc. Corros. Prot., 2006, 26(2): 125
[12] (朱丽琴, 刘瑞泉, 王吉德. 噻二唑衍生物在3%NaHCO3溶液中对Cu的缓蚀作用[J]. 中国腐蚀与防护学报, 2006, 26(2): 125)
[13] Chen Z, Huang L, Zhang G, et al.Benzotriazole as a volatile corrosion inhibitor during the early stage of copper corrosion under adsorbed thin electrolyte layers[J]. Corros. Sci., 2012, 65(4): 214
[14] Hegazy M A, Badawi A M, Rehim S S A E, et al. Corrosion inhibition of carbon steel using novel N-(2-(2-mercaptoacetoxy) ethyl)-N,N-dimethyl dodecan-1-aminium bromide during acid pickling[J]. Corros. Sci., 2013, 69(2): 110
[15] Kesavan D, Tamizh M M, Gopiraman M, et al.Physicochemical studies of 4-Substituted N-(2-Mercaptophenyl)-Salicylideneimines:Corrosion inhibition of mild steel in an acid medium[J]. J. Surfactants Deterg., 2012, 15(5): 567
[16] Negm N A, Sabagh A M A, Migahed M A, et al. Effectiveness of some diquaternary ammonium surfactants as corrosion inhibitors for carbon steel in 0.5 M HCl solution[J]. Corros. Sci., 2010, 52(6): 2122
[17] Noor E A, Al-Moubaraki A H. Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4 [4′ (-X) -styryl pyridinium iodides/hydrochloric acid systems[J]. Mater. Chem. Phys., 2008, 110(1): 145
[18] Negm N A, Elkholy Y M, Zahran M K, et al.Corrosion inhibition efficiency and surface activity of benzothiazol-3-ium cationic schiffbase derivatives in hydrochloric acid[J]. Corros. Sci., 2010, 52(10): 3523
[19] Negm N A, Al Sabagh A M, Migahed M A, et al. Effectiveness of some diquaternary ammonium surfactants as corrosion inhibitors for carbon steel in 0.5 M HCl solution[J]. Corros. Sci., 2010, 52(6): 2122
[20] Song W W, Zhang J, Du M.Inhibition performance of novel dissymmetric bisquaternary ammonium salt to Q235 steel in hydrochloric acid[J]. Acta Chim. Sin., 2011, 69(16): 1851
[20] (宋伟伟, 张静, 杜敏. 新型不对称双季铵盐缓蚀剂在HCl中对Q235钢的缓蚀行为[J]. 化学学报, 2011, 69(16): 1851)
[21] Martinez S, ?tern I.Inhibitory mechanism of low-carbon steel corrosion by mimosa tannin in sulphuric acid solutions[J]. J. Appl. Electrochem., 2001, 31(9): 973
[22] Aljourani J, Raeissi K, Golozar M A.Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1 M HCl solution[J]. Corros. Sci., 2009, 51(8): 1836
[23] Li X H, Deng S D, Mu G N, et al.Inhibition effect of nonionic surfactant on the corrosion of cold rolled steel in hydrochloric acid[J]. Corros. Sci., 2008, 50(2): 420
[24] Solmaz R, Kardas G, Yazici B, et al. Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1,3,4-thiadiazole on mild steel in hydrochloric acid madia [J]. Colloid. Surface., 2008, 312(1)A: 7
[25] Pang X H, Li W H, Hou B R, et al.Inhibition effect of drug product of quinolones on the corrosion of mild steel in HCl solution[J]. J. Chin. Soc. Corros. Prot., 2008, 28(3): 173
[25] (庞雪辉, 李伟华, 侯保荣等. 喹诺酮药品对Q235钢在HCl溶液中缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2008, 28(3): 173)
[26] Hmamou D B, Salghi R, Zarrouk A, et al.Alizarin red: An efficient inhibitor of C38 steel corrosion in hydrochloric acid[J]. Int. J. Electrochem. Sci., 2012, 7(6): 5716
[27] Wei B M.The Theory of Metal Corrosion and Application [M]. Beijing: Chemical Industry Press, 1984: 83
[27] (魏宝明. 金属腐蚀理论及应用 [M]. 北京: 化学工业出版社, 1984: 83)
[28] Zhou X, Yang H Y, Cai D C, et al.The corrosion and inhibition of mild steel in monoethanolamine solution abounded with H2S[J]. J. Chin. Soc. Corros. Prot., 2005, 25(2): 79
[28] (周欣, 杨怀玉, 蔡铎昌等. 低碳钢在富含H2S乙醇胺溶液中的腐蚀及缓蚀剂抑制[J]. 中国腐蚀与防护学报, 2005, 25(2): 79)
[29] Zheng X W, Gong M, Zeng X G, et al.Corrosion inhibition of L-phenylalanine for Q235 steel in sulfuric acid solutions[J]. Surf. Technol., 2012, 41(3): 33
[30] Sapre K, Seal S, Jepson P, et al.Investigation into the evolution of corrosion product layer (CPL) of 1018 C-steel exposed to multiphase environment using FIB and EIS techniques[J]. Corros. Sci., 2003, 45(1): 59
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[4] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[5] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[6] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] 李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[8] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[9] 赵国仙,黄静,薛艳. 某油田地面集输管道用材腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[10] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[12] 许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[13] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[14] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[15] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.