Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (4): 277-282    
  研究报告 本期目录 | 过刊浏览 |
外加拉应力对X80管线钢点蚀电化学行为的影响
袁 玮 黄 峰 胡 骞 刘 静 侯震宇
武汉科技大学材料与冶金学院 武汉 430081
Influences of Applied Tensile Stress on the Pitting Electrochemical Behavior of X80 Pipeline Steel
YUAN Wei,HUANG Feng,HU Qian,LIU Jing,HOU Zhenyu
School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081,China
全文: PDF(1871 KB)  
摘要: 运用电化学噪声测试技术,结合动电位极化方法研究了外加拉应力对X80管线钢在NaHCO3 + NaCl体系中点蚀电化学行为的影响。结果表明,较小的外加拉应力(σ ≤100 MPa)对X80管线钢点蚀的发生有抑制作用,且抑制作用随应力的增大而增大;较大的外加拉应力(σ ≥200 MPa)对X80管线钢点蚀的发生有促进作用,且促进作用随应力的增大而增大。
关键词 动电位极化电化学噪声X80管线钢点蚀电化学行为    
Abstract:Abstract:The influence of applied tensile stress on the pitting electrochemical behavior of X80 pipeline steel in NaHCO3 + NaCl solution was investigated by using electrochemical noise measurement combining with potentiodynamic polarization measurement. The results showed that the pitting of X80 pipeline steel was inhibited when the applied tensile stress lower than 100 MPa, and the lower the stress was, the weaker the inhibition was. The pitting of X80 pipeline steel was promoted when applied tensile stress higher than 200 MPa, and the higher the stress was, the stronger the promotion role was.
Key wordspotentiodynamic polarization    electrochemical noise    X80 pipeline steel    pitting electrochemical behavior
    
ZTFLH:  TG171  

引用本文:

袁玮, 黄峰, 胡骞, 刘静, 侯震宇. 外加拉应力对X80管线钢点蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 277-282.
YUAN Wei, HUANG Feng, HU Qian, LIU Jing, HOU Zhenyu. Influences of Applied Tensile Stress on the Pitting Electrochemical Behavior of X80 Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2013, 33(4): 277-282.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I4/277

[1] Hiroyuki M. SKFM observation of SCC on SUS304 stainless steel [J]. Corros. Sci., 2007, 49(1): 120-129
[2] Boven V G, Chen W, Rogge R.The role of residual stress in near pH stress corrosion cracking of pipeline steels. Part I: Pitting and cracking occurrence [J]. Acta Mater., 2007, 55(1): 29-42
[3] Zhang J Q, Zhang Z, Wang J M. Analysis and application of electrochemical noise I. Theory of electrochemical noise snalysis [J]. J. Chin. Soc. Corros. Prot., 2001, 21(5): 310-320
(张鉴清, 张昭, 王建明. 电化学噪声的分析与应用-I.电化学噪声的分析原理 [J]. 中国腐蚀与防护学报, 2001, 21(5): 310-320)
[4] Huang F, Qu Y M, Deng Z J. Pitting electrochemical behaviors of different microstructure X80 steel in high pH soil simulative solution [J]. J. Chin. Soc. Corros. Prot., 2010, 30(1): 29-34
(黄峰, 曲炎淼, 邓照军. 不同组织X80钢在高pH土壤模拟溶液中的点蚀电化学行为 [J]. 中国腐蚀与防护学报, 2010, 30(1): 29-34)
[5] Xue H B, Cheng Y F. Passivity and pitting corrosion of X80 pipeline steel in carbonate/bicarbonate solution studied by electrochemical measurements [J]. J. Mater. Eng. Perform., 2010, 19(9): 1311-1317
[6] Chen C M, Zhang T, Shao Y W. Electrochemical noise analysis for corrosion of AZ91D magnesium alloy in alkaline chloridemedium [J]. Corros. Sci. Prot. Technol., 2009, 21(1): 15-19
(陈崇木, 张涛, 邵亚薇. AZ91D镁合金在NaCl溶液中腐蚀过程的电化学噪声分析 [J]. 腐蚀科学与防护技术, 2009, 21(1): 15-19)
[7] Dong Z H. Electrochemical noise of 16Mn localized corrosion and its analysis method research [D]. Wuhan: Huazhong University of Science and Technology, 2001
(董泽华. 16Mn钢局部腐蚀中的电化学噪声及其解析方法研究 [D]. 武汉: 华中科技大学, 2001)
[8] Hu L H, Du N, Wang M F. Monitoring the initial pitting behaviors of 1Cr18Ni9Ti stainless steel by electrochemical noise and electrochemical impedance spectroscopy [J]. J. Chin. Soc. Corros. Prot., 2007, 27(4): 233-237
(胡丽华, 杜楠, 王梅丰. 电化学噪声和电化学阻抗谱监测1Cr18Ni9Ti不锈钢的初期点蚀行为 [J]. 中国腐蚀与防护学报, 2007, 27(4): 233-237)
[9] Lin C J, Feng Z D, Lin F L, et al. Electrochemical behaviors of the loaded stainless steel in dilute thiosulphate solution [J]. Electrochemistry, 1995, 1(4): 439-445
(林昌健, 冯祖德, 林福龄等. 18/8型不锈钢在受力形变条件下腐蚀电化学行为的研究 [J]. 电化学, 1995, 1(4): 439-445)
[10] Li M C, Cheng Y F. Corrosion of the stressed pipe steel in carbonate-bicarbonate solution studied by scanning localized electrochemical impedance spectroscopy [J]. Electrochem. Acta, 2008, 53(1): 2831-2836
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[4] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[5] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[6] 张志英, 汤迦南, 余杰, 王旭东, 黄罗超, 邹俊文, 唐浩, 张继康, 陈亚涛, 程东鹏. 铜基非晶合金复合材料在NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
[7] 焦明远, 金伟良, 毛江鸿, 李腾, 夏晋. 电化学修复过程混凝土内环境对钢筋表面析氢影响的实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[8] 安朋亮, 梁平, 任建民, 史艳华, 刘峰, 陈思瑶. 高氮奥氏体不锈钢点蚀行为的电化学噪声特征[J]. 中国腐蚀与防护学报, 2018, 38(1): 26-32.
[9] 陈洁净,鞠虹,孙灿,李霞,刘雲飞. 电化学测试技术在垢下腐蚀中的应用[J]. 中国腐蚀与防护学报, 2017, 37(3): 207-215.
[10] 任继栋,高荣杰,张宇,刘勇,丁甜. 混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 233-240.
[11] 宋丰轩,赵启忠,李飞龙,任月路,黄奎,张新明. 不同时效态7050铝合金板材腐蚀速率测量[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[12] 张康南,吴明,谢飞,王丹,伞宇曦,江峰. 磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 148-154.
[13] 隋佳利,李相波,林志峰,詹天荣. 两种热喷涂锌铝涂层在低温海水介质中防腐性能研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 471-475.
[14] 张弟,梁平,张云霞,史艳华,秦华. 库尔勒土壤模拟溶液中形成的腐蚀产物膜对X80钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
[15] 张宁,孙虎元,孙立娟,刘栓. X80管线钢在滨海滩涂土壤模拟液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(4): 339-344.