Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (4): 339-344    DOI: 10.11902/1005.4537.2014.134
  本期目录 | 过刊浏览 |
X80管线钢在滨海滩涂土壤模拟液中的电化学腐蚀行为
张宁1,2,孙虎元1(),孙立娟1,刘栓1,2
2. 中国科学院大学 北京 100049
Electrochemical Corrosion Behavior of X80 Pipeline Steel in a Simulated Soil Solution for Coastal Tidal Flat Wetland
Ning ZHANG1,2,Huyuan SUN1(),Lijuan SUN1,Shuan LIU1,2
1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences,Qingdao 266071, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(2994 KB)   HTML
摘要: 

应用EIS和动电位极化曲线测试技术,结合腐蚀形貌观察,研究了X80管线钢在滨海滩涂土壤模拟液中的电化学腐蚀行为。结果表明,X80管线钢在滨海滩涂土壤模拟液中的腐蚀行为随浸泡时间和腐蚀产物的变化而改变。分析EIS得出,其经历了先缓慢增大,到由于黑色锈层形成而迅速激增,再到锈层脱落而急剧减小的过程,说明X80管线钢的电化学腐蚀行为主要分3个阶段,即初期腐蚀产物膜未形成时腐蚀速率缓慢增大阶段;中期因保护性腐蚀产物膜形成,腐蚀速率迅速减小阶段;后期部分腐蚀产物脱落等因素导致腐蚀速率再次增大阶段。

关键词 X80管线钢滩涂土壤模拟液电化学腐蚀电化学阻抗谱    
Abstract

The electrochemical corrosion behavior of X80 pipeline steel in a simulated soil solution for coastal tidal flat wetland was studied by using the polarization curves, electrochemical impedance spectroscopy and corrosion morphology observation. The results indicated that immersion time and corrosion products had a significant impact on the corrosion behavior of X80 pipeline steel in the simulated soil solution. At the initial immersion, the impedance of X80 increased slowly. With the prolongation of immersion time and the formation of a black rust layer, the impedance of X80 increased sharply. And then, since the spallation of the rust layer, the impedance of X80 rapidly decreased. The electrochemical corrosion behavior of X80 pipeline steel can be divided into three phases. In the initial phase, the corrosion rate increases slowly before the formation of a corrosion product film. In the interim phase, the corrosion rate decreases rapidly due to the formation of a protective corrosion product film. In the later phase, the corrosion rate increases again due to the partial spallation of the protective film and other facts.

Key wordsX80 pipeline steel    coastal tidal flat wetland    simulated soil solution    electrochemical corrosion    EIS
    
基金资助:国家自然科学基金项目 (41476067) 资助

引用本文:

张宁,孙虎元,孙立娟,刘栓. X80管线钢在滨海滩涂土壤模拟液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(4): 339-344.
Ning ZHANG, Huyuan SUN, Lijuan SUN, Shuan LIU. Electrochemical Corrosion Behavior of X80 Pipeline Steel in a Simulated Soil Solution for Coastal Tidal Flat Wetland. Journal of Chinese Society for Corrosion and protection, 2015, 35(4): 339-344.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.134      或      https://www.jcscp.org/CN/Y2015/V35/I4/339

图1  X80管线钢在滨海滩涂土壤模拟液中浸泡不同时间的EIS谱
图2  X80管线钢在滨海滩涂土壤模拟液中的等效电路图
Time / d Rs / Ωcm2 Q1 / μFcm-2 n1 Rr / Ωcm2 Q2 / μFcm-2 n2 Rct / Ωcm2
0.02 0.8167 51.97 1 40.42 172.5 0.7103 2144
1 0.8653 54.75 1 44.88 254.7 0.6710 2124
3 1.365 55.44 1 32.63 265.2 0.6503 2541
9 2.013 91.73 1 31.96 255.0 0.6483 2883
11 2.439 111.2 1 76.80 279.2 0.6378 3004
14 2.222 211.8 0.9338 488.1 257.8 0.6629 3042
16 2.754 234.2 0.9348 531.5 268.4 0.6737 3042
18 3.589 258.4 0.9336 600.0 289.0 0.6791 3043
23 3.076 304. 5 0.9402 528.9 327.1 0.6500 2963
28 4.209 413.3 0.9195 66.60 438.0 0.7300 1806
表1  X80管线钢在滨海滩涂土壤模拟液中浸泡不同时间的EIS拟合参数
图3  锈层电阻 (Rr) 和总电阻 (Rs+Rr+Rct) 随浸泡时间的变化
图4  X80管线钢在滨海滩涂土壤模拟液中浸泡不同时间的动电位极化曲线
Time / d Ecorr V/SCE Icorr μAcm-2 βa mVdec-1 βc mVdec-1
0.08 -0.737 2.87 56.5 -106.4
28 -0.770 3.99 79.3 -141.3
表2  X80管线钢在滨海滩涂土壤模拟液中浸泡不同时间的动电位极化曲线拟合参数
图5  X80管线钢在滨海滩涂土壤模拟液中浸泡前后的腐蚀形貌
图6  X80管线钢在滨海滩涂土壤模拟液中浸泡前后的SEM像
[1] Li H L. Hot topics in study and application of steel line pipe for natural gas transportation[J]. China Mech. Eng., 2001, 12(3): 349 (李鹤林. 天然气输送钢管研究与应用中的几个热点问题[J]. 中国机械工程, 2001, 12(3): 349)
[2] Domizzi G,Anteri G,Ovejero-Garc?a J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels [J]. Corros. Sci.., 2001, 43(2): 325
[3] Zhang L, Shan G. Research and trial production of X80 pipeline steel with high toughness using acicular ferrite[J]. Eng. Sci., 2005, 3(3): 91
[4] Zhang Z G, Wu M, Cheng H L, et al. Development of pipeline steel X80 and research of its corrosion behaviors[J]. Contemporary Chem. Ind., 2011, 40(2): 206 (张治国, 吴明, 程浩力等. X80 级管线钢的发展及腐蚀实验研究概况[J]. 当代化工, 2011, 40(2): 206)
[5] Gadala I M, Alfantazi A. Electrochemical behavior of API-X100 pipeline steel in NS4, near-neutral, and mildly alkaline pH simulated soil solutions[J]. Corros. Sci., 2014, 82: 45
[6] Cole I S, Marney D. The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soils[J]. Corros. Sci., 2012, 56: 5
[7] Yan M, Sun C, Xu J, et al. Role of Fe oxides in corrosion of pipeline steel in a red clay soil[J]. Corros. Sci., 2014, 80: 309
[8] Zhang L, Li X G, Du C W, et al. Corrosion behavior of X70 pipeline steel in simulated Ku'erle soil solution with CO2[J]. Acta Metall. Sin., 2009, 44(12): 1439 (张亮, 李晓刚, 杜翠薇等. X70 管线钢在含CO2库尔勒土壤模拟溶液中的腐蚀行为[J]. 金属学报, 2009, 44(12): 1439)
[9] Zhao Y, Liang P, Shi Y H, et al. Comparison of passive films on X100 and X80 pipeline steels in NaHCO3 solution[J]. J. Chin. Soc.Corros. Prot., 2013, 33(6): 455 (赵阳, 梁平, 史艳华等. NaHCO3溶液中X100和X80管线钢钝化膜性能比较[J]. 中国腐蚀与防护学报, 2013, 33(6): 455)
[10] Fan L, Li X G, Du C W, et al. Electrochemical behavior of passive films formed on X80 pipeline steel in various concentrated NaHCO3 solutions[J]. J. Chin. Soc. Corros. Prot., 2012, 32(4): 322 (范林, 李晓刚, 杜翠薇等. X80管线钢钝化膜在各种高浓度 NaHCO3溶液中的电化学行为[J]. 中国腐蚀与防护学报, 2012, 32(4): 322)
[11] Mei H S, Wang C P, Zhang W, et al. Effect of hydrogen charging on stress corrosion cracking of X80 pipeline steel in simulated Yingtan soil solution[J]. J. Chin. Soc. Corros. Prot., 2013, 33(5): 387 (梅华生, 王长朋, 张帷等. 电化学充氢对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 387)
[12] Liang P, Wang Y. Electrochemical behavior of X80 steel covered by a rust layer formed after short-term corrosion[J]. J. Chin. Soc.Corros. Prot., 2013, 33(5): 371 (梁平, 王莹. 覆有短期腐蚀产物膜的X80钢的电化学行为[J]. 中国腐蚀与防护学报, 2013, 33(5): 371)
[13] Wang Y. The mudflat system of China[J]. Can. J. Fish. Aquat. Sci., 1983, 40(S1): s160
[14] Lin B L, Lu X Y, Li L. Corrosion behavior of metal end of PHC pipe pile in simulated soil solutions[J]. J. Central South Univ.(Sci.Technol.), 2011, 42(2): 434 (林碧兰, 路新瀛, 李龙. PHC管桩金属端头在土壤模拟液中的腐蚀行为[J]. 中南大学学报 (自然科学版), 2011, 42(2): 434)
[15] Li M C, Lin H C, Cao C N. Study on soil corrosion of carbon steel by electrochemical impedance spectroscopy (EIS)[J]. J. Chin. Soc.Corros. Prot., 2000, 20(2): 111 (李谋成, 林海潮, 曹楚南. 碳钢在土壤中腐蚀的电化学阻抗谱特征[J]. 中国腐蚀与防护学报, 2000, 20(2): 111)
[16] Zhang L, Li X G, Du C W, et al. Corrosion behavior of X70 pipeline steel in simulated Ku'erle soil solution with CO2[J]. Acta Metall. Sin., 2009, 44(12): 1439 (张亮, 李晓刚, 杜翠薇等. X70 管线钢在含CO2库尔勒土壤模拟溶液中的腐蚀行为[J]. 金属学报, 2009, 44(12): 1439)
[17] Su X, Yin Z, Cheng Y F. Corrosion of 16Mn line pipe steel in a simulated soil solution and the implication on its long-term corrosion behavior[J]. J. Mater. Eng. Perform., 2013, 22(2): 498
[1] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[2] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[3] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[5] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[6] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[8] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[9] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[10] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[12] 施远,金洙吉,姜冠楠,刘作涛,周忠正,王泽北. YG15硬质合金电化学腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
[13] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[14] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[15] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.