|
|
电化学阻抗谱研究负向电压对AZ31B镁合金微弧氧化陶瓷层致密性的影响 |
郭泉忠1, 张伟1,杜克勤1,王荣2 |
1.中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
2. 中国兵器科学研究院宁波分院 宁波315103 |
|
EFFECT OF NEGATIVE POTENTIAL ON COMPACTNESS OF PLASMA ELECTROLYTIC OXIDATION COATINGS ON MAGNESIUM ALLOY AZ31B BY ELECTROCHEMICAL IMPEDANCE SPECTRUM |
GUO Quanzhong1, ZHANG Wei1, DU Keqin1, WANG Rong2 |
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy ofScience, Shenyang 110016
2. The Ningbo Branch of Ordnance Science of China, Ningbo 315103 |
引用本文:
郭泉忠, 张伟,杜克勤,王荣. 电化学阻抗谱研究负向电压对AZ31B镁合金微弧氧化陶瓷层致密性的影响[J]. 中国腐蚀与防护学报, 2012, 32(6): 467-472.
GUO Quanzhong,
ZHANG Wei,
DU Keqin,
WANG Rong.
EFFECT OF NEGATIVE POTENTIAL ON COMPACTNESS OF PLASMA ELECTROLYTIC OXIDATION COATINGS ON MAGNESIUM ALLOY AZ31B BY ELECTROCHEMICAL IMPEDANCE SPECTRUM. Journal of Chinese Society for Corrosion and protection, 2012, 32(6): 467-472.
链接本文:
https://www.jcscp.org/CN/
或
https://www.jcscp.org/CN/Y2012/V32/I6/467
|
[1] Aghion E, Bronfin B, Eliezer D. The role of the magnesium industry in protecting the environment[J]. J. Mater. Process. Technol., 2001, 117(3): 381-385 [2] Gray J E, Luan B. Protective coatings on magnesium and its alloys-a critical review [J]. J. Alloys Compd., 2002, 336(1-2): 88-113 [3] Yerokhin A L, Nie X, Layland A, et al. Plasma electrolysis for surface engineering[J]. Surf. Coat. Technol., 1999, 122(2-3): 73-93 [4] Arrabal R, Matykina E, Hashimoto T, et al. Characterization of AC PEO coatings on magnesium alloys[J]. Surf. Coat. Technol., 2009, 203(15): 2207-2220 [5] Chang L R, Cao F H, Cai J S, et al. Influence of electric parameters on MAO of AZ91D magnesium alloy using alternative square-wave power source[J]. Trans. Nonferrou. Met. Soc. China., 2011, 21(2): 307-316 [6] Timoshenko A V, Magurova Y V. Investigation of plasma electrolytic oxidation processes of magnesium alloy MA21 under pulse polarisation modes[J]. Surf. Coat. Technol., 2005, 199(2-3): 135-140 [7] Jin F Y, Chu P K, Xu G D, et al. Structure and mechanical properties of magnesium alloy treated by micro-arc discharge oxidation using direct current and high-frequency bipolar pulsing modes[J]. Mater. Sci. Eng., 2006, A435-436(4): 123-126 [8] Hussein R O, Zhang P, Nie X, et al. The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62[J]. Surf. Coat. Technol., 2011, 206(7): 1990-1997 [9] Wu D, Liu X D, Lyu K. Effects of reverse voltage and oxidation time on coating formation on AZ91D magnesium alloy[J]. Special Cast. Nonferrous Alloys, 2008, 30(7): 564-566 (乌迪, 刘向东, 吕凯. 负向电压与氧化时间对AZ91D微弧氧化膜层形成特性的影响[J]. 特种铸造及有色合金, 2008, 30(7): 564-566) [10] Liu Z D, Fu H, Sun M J, et al. Influence of negative voltage on coating of magnesium alloy micro-arc oxidation[J]. Light Met., 2009, 15(4):45-48 (刘忠德, 付华, 孙茂坚. 负向电压对镁合金微弧氧化膜层的影响[J]. 轻金属, 2009, 15(4):45-48) [11] Duan H P, Yan C W, Wang F H. Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution[J]. Electrochim. Acta, 2007, 52(15): 5002-5009 [12] Khaselev O, Weiss D, Yahalom J. Structure and composition of anodic films formed on binary Mg-Al alloys in KOH-aluminate solutions under continuous sparking[J]. Corros. Sci., 2001, 43(7): 1295-1307 [13] Bonora P L, Deflorian F, Fedrizzi L. Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion[J]. Electrochim. Acta, 1996, 41(7-8): 1073-1082 [14] Jorcin J B, Orazem M E, Pebere N, et al. CPE analysis by local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2006, 51(8-9): 1473-1479 [15] Sundararajan G, Krishna L R. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology[J]. Surf. Coat. Technol., 2003, 167(2-3): 269-277 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|