Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (6): 467-472    
  研究报告 本期目录 | 过刊浏览 |
电化学阻抗谱研究负向电压对AZ31B镁合金微弧氧化陶瓷层致密性的影响
郭泉忠1, 张伟1,杜克勤1,王荣2
1.中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
2. 中国兵器科学研究院宁波分院 宁波315103
EFFECT OF NEGATIVE POTENTIAL ON COMPACTNESS OF PLASMA ELECTROLYTIC OXIDATION COATINGS ON MAGNESIUM ALLOY AZ31B BY ELECTROCHEMICAL IMPEDANCE SPECTRUM
GUO Quanzhong1, ZHANG Wei1, DU Keqin1, WANG Rong2
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy ofScience, Shenyang 110016
2. The Ningbo Branch of Ordnance Science of China, Ningbo 315103
全文: PDF(2895 KB)  
摘要: 

采用单极性和双极性脉冲,分别改变几种不同正向电压时的负向电压,在AZ31B镁合金表面制备了微弧氧化膜。利用电化学阻抗谱和扫描电镜研究氧化膜的等效电路元件值以及微观结构的变化,从而分析负向电压对镁合金微弧氧化膜致密性的影响。结果表明:负向电压对于微弧氧化陶瓷膜致密性具有至关重要的作用,适当的负向电压可以有效地提高膜层致密性。并且,不同的正向电压下形成致密氧化膜的负向电压都约为30 V,不随正向电压变化而变化。

关键词 镁合金微弧氧化负向电压电化学阻抗谱致密性    
Abstract

The effect of negative potential of bipolar pulse on the compactness of plasma electrolytic oxidation (PEO) coating on magnesium alloy is not definite nowadays. PEO coatings on magnesium alloy AZ31B were prepared by respectively using unipolar and bipolar pulse whose negative potential was changed while positive potential was at several levels. In order to analyze the effect of negative potential on compactness of PEO coatings, the samples were examined by electrochemical impedance spectrum (EIS) and scanning electron microscope (SEM) to study the variation of equivalent circuit data and the change of macrostructure. The results have shown that negative potential plays an important role on compactness of PEO coatings and suitable negative potential can increase the compactness of coatings. The negative potential of pulse which can prepare compact coatings is always 30 V and stays the same at several levels of positive potential.

Key wordsmagnesium alloy    plasma electrolytic oxidation    negative potential    electrochemical impedance spectrum    compactness
收稿日期: 2011-11-28     
ZTFLH:  TG174.4  
基金资助:

材料基础与应用技术重点项目(A0920110028),国家科技支撑计划(2011BAE22B05)和辽宁省重大科技计划项目 (YOF1811181)资助

通讯作者: 杜克勤     E-mail: kqdu@imr.ac.cn
作者简介: 郭泉忠,男,1987年生,博士生,研究方向为金属腐蚀与防护

引用本文:

郭泉忠, 张伟,杜克勤,王荣. 电化学阻抗谱研究负向电压对AZ31B镁合金微弧氧化陶瓷层致密性的影响[J]. 中国腐蚀与防护学报, 2012, 32(6): 467-472.
GUO Quanzhong, ZHANG Wei, DU Keqin, WANG Rong. EFFECT OF NEGATIVE POTENTIAL ON COMPACTNESS OF PLASMA ELECTROLYTIC OXIDATION COATINGS ON MAGNESIUM ALLOY AZ31B BY ELECTROCHEMICAL IMPEDANCE SPECTRUM. Journal of Chinese Society for Corrosion and protection, 2012, 32(6): 467-472.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I6/467

 


[1] Aghion E, Bronfin B, Eliezer D. The role of the magnesium industry in protecting the environment[J]. J. Mater. Process. Technol., 2001, 117(3): 381-385

[2] Gray J E, Luan B. Protective coatings on magnesium and its alloys-a critical review [J]. J. Alloys Compd., 2002, 336(1-2): 88-113

[3] Yerokhin A L, Nie X, Layland A, et al. Plasma electrolysis for surface engineering[J]. Surf. Coat. Technol., 1999, 122(2-3): 73-93

[4] Arrabal R, Matykina E, Hashimoto T, et al. Characterization of AC PEO coatings on magnesium alloys[J]. Surf. Coat. Technol., 2009, 203(15): 2207-2220

[5] Chang L R, Cao F H, Cai J S, et al. Influence of electric parameters on MAO of AZ91D magnesium alloy using alternative square-wave power source[J]. Trans. Nonferrou. Met. Soc. China., 2011, 21(2): 307-316

[6] Timoshenko A V, Magurova Y V. Investigation of plasma electrolytic oxidation processes of magnesium alloy MA21 under pulse polarisation modes[J]. Surf. Coat. Technol., 2005, 199(2-3): 135-140

[7] Jin F Y, Chu P K, Xu G D, et al. Structure and mechanical properties of magnesium alloy treated by micro-arc discharge oxidation using direct current and high-frequency bipolar pulsing modes[J]. Mater. Sci. Eng., 2006, A435-436(4): 123-126

[8] Hussein R O, Zhang P, Nie X, et al. The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62[J]. Surf. Coat. Technol., 2011, 206(7): 1990-1997

[9] Wu D, Liu X D, Lyu K. Effects of reverse voltage and oxidation time on coating formation on AZ91D magnesium alloy[J]. Special Cast. Nonferrous Alloys, 2008, 30(7): 564-566

(乌迪, 刘向东, 吕凯. 负向电压与氧化时间对AZ91D微弧氧化膜层形成特性的影响[J]. 特种铸造及有色合金, 2008, 30(7): 564-566)

[10] Liu Z D, Fu H, Sun M J, et al. Influence of negative voltage on coating of magnesium alloy micro-arc oxidation[J]. Light Met., 2009, 15(4):45-48

(刘忠德, 付华, 孙茂坚. 负向电压对镁合金微弧氧化膜层的影响[J]. 轻金属, 2009, 15(4):45-48)

[11] Duan H P, Yan C W, Wang F H. Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution[J]. Electrochim. Acta, 2007, 52(15): 5002-5009

[12] Khaselev O, Weiss D, Yahalom J. Structure and composition of anodic films formed on binary Mg-Al alloys in KOH-aluminate solutions under continuous sparking[J]. Corros. Sci., 2001, 43(7): 1295-1307

[13] Bonora P L, Deflorian F, Fedrizzi L. Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion[J]. Electrochim. Acta, 1996, 41(7-8): 1073-1082

[14] Jorcin J B, Orazem M E, Pebere N, et al. CPE analysis by local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2006, 51(8-9): 1473-1479

[15] Sundararajan G, Krishna L R. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology[J]. Surf. Coat. Technol., 2003, 167(2-3): 269-277
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[6] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[7] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[8] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[9] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[10] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[11] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[12] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[13] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[14] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[15] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.